Suppr超能文献

基于非线性高阶特征和超图卷积神经网络的阿尔茨海默病分类

[Alzheimer's disease classification based on nonlinear high-order features and hypergraph convolutional neural network].

作者信息

Zeng An, Luo Bairong, Pan Dan, Rong Huabin, Cao Jianfeng, Zhang Xiaobo, Lin Jing, Yang Yang, Liu Jun

机构信息

School of Computers, Guangdong University of Technology, Guangzhou 510006, P. R. China.

School of Electronics and Information Engineering, Guangdong University of Technology and Education, Guangzhou 510665, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Oct 25;40(5):852-858. doi: 10.7507/1001-5515.202305060.

Abstract

Alzheimer's disease (AD) is an irreversible neurodegenerative disorder that damages patients' memory and cognitive abilities. Therefore, the diagnosis of AD holds significant importance. The interactions between regions of interest (ROIs) in the brain often involve multiple areas collaborating in a nonlinear manner. Leveraging these nonlinear higher-order interaction features to their fullest potential contributes to enhancing the accuracy of AD diagnosis. To address this, a framework combining nonlinear higher-order feature extraction and three-dimensional (3D) hypergraph neural networks is proposed for computer-assisted diagnosis of AD. First, a support vector machine regression model based on the radial basis function kernel was trained on ROI data to obtain a base estimator. Then, a recursive feature elimination algorithm based on the base estimator was applied to extract nonlinear higher-order features from functional magnetic resonance imaging (fMRI) data. These features were subsequently constructed into a hypergraph, leveraging the complex interactions captured in the data. Finally, a four-dimensional (4D) spatiotemporal hypergraph convolutional neural network model was constructed based on the fMRI data for classification. Experimental results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database demonstrated that the proposed framework outperformed the Hyper Graph Convolutional Network (HyperGCN) framework by 8% and traditional two-dimensional (2D) linear feature extraction methods by 12% in the AD/normal control (NC) classification task. In conclusion, this framework demonstrates an improvement in AD classification compared to mainstream deep learning methods, providing valuable evidence for computer-assisted diagnosis of AD.

摘要

阿尔茨海默病(AD)是一种不可逆的神经退行性疾病,会损害患者的记忆和认知能力。因此,AD的诊断至关重要。大脑中感兴趣区域(ROI)之间的相互作用通常涉及多个区域以非线性方式协作。充分利用这些非线性高阶相互作用特征有助于提高AD诊断的准确性。为了解决这个问题,提出了一种结合非线性高阶特征提取和三维(3D)超图神经网络的框架用于AD的计算机辅助诊断。首先,基于径向基函数核的支持向量机回归模型在ROI数据上进行训练以获得一个基估计器。然后,应用基于该基估计器的递归特征消除算法从功能磁共振成像(fMRI)数据中提取非线性高阶特征。随后,利用数据中捕获的复杂相互作用将这些特征构建成一个超图。最后,基于fMRI数据构建一个四维(4D)时空超图卷积神经网络模型用于分类。阿尔茨海默病神经影像倡议(ADNI)数据库的实验结果表明,在AD/正常对照(NC)分类任务中,所提出的框架比超图卷积网络(HyperGCN)框架的性能高出8%,比传统的二维(2D)线性特征提取方法高出12%。总之,与主流深度学习方法相比,该框架在AD分类方面有所改进,为AD的计算机辅助诊断提供了有价值的证据。

相似文献

4
Alzheimer's disease diagnosis based on multiple cluster dense convolutional networks.基于多簇密集卷积网络的阿尔茨海默病诊断。
Comput Med Imaging Graph. 2018 Dec;70:101-110. doi: 10.1016/j.compmedimag.2018.09.009. Epub 2018 Oct 2.
10
RNN-based longitudinal analysis for diagnosis of Alzheimer's disease.基于 RNN 的阿尔茨海默病纵向分析诊断。
Comput Med Imaging Graph. 2019 Apr;73:1-10. doi: 10.1016/j.compmedimag.2019.01.005. Epub 2019 Jan 26.

本文引用的文献

6
Early Diagnosis of Alzheimer's Disease Based on Resting-State Brain Networks and Deep Learning.基于静息态脑网络和深度学习的阿尔茨海默病早期诊断。
IEEE/ACM Trans Comput Biol Bioinform. 2019 Jan-Feb;16(1):244-257. doi: 10.1109/TCBB.2017.2776910. Epub 2017 Nov 23.
7
Stop Alzheimer's before it starts.在阿尔茨海默病发作之前阻止它。
Nature. 2017 Jul 12;547(7662):153-155. doi: 10.1038/547153a.
9
Hyper-connectivity of functional networks for brain disease diagnosis.功能网络的超连接用于脑疾病诊断。
Med Image Anal. 2016 Aug;32:84-100. doi: 10.1016/j.media.2016.03.003. Epub 2016 Mar 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验