Biomedical Engineering, Yale University, New Haven, CT, 06511, USA; Electrical and Computer Engineering, The University of British Columbia, Vancouver, BC, V6T1Z4, Canada.
Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06511, USA.
Med Image Anal. 2021 Dec;74:102233. doi: 10.1016/j.media.2021.102233. Epub 2021 Sep 12.
Understanding which brain regions are related to a specific neurological disorder or cognitive stimuli has been an important area of neuroimaging research. We propose BrainGNN, a graph neural network (GNN) framework to analyze functional magnetic resonance images (fMRI) and discover neurological biomarkers. Considering the special property of brain graphs, we design novel ROI-aware graph convolutional (Ra-GConv) layers that leverage the topological and functional information of fMRI. Motivated by the need for transparency in medical image analysis, our BrainGNN contains ROI-selection pooling layers (R-pool) that highlight salient ROIs (nodes in the graph), so that we can infer which ROIs are important for prediction. Furthermore, we propose regularization terms-unit loss, topK pooling (TPK) loss and group-level consistency (GLC) loss-on pooling results to encourage reasonable ROI-selection and provide flexibility to encourage either fully individual- or patterns that agree with group-level data. We apply the BrainGNN framework on two independent fMRI datasets: an Autism Spectrum Disorder (ASD) fMRI dataset and data from the Human Connectome Project (HCP) 900 Subject Release. We investigate different choices of the hyper-parameters and show that BrainGNN outperforms the alternative fMRI image analysis methods in terms of four different evaluation metrics. The obtained community clustering and salient ROI detection results show a high correspondence with the previous neuroimaging-derived evidence of biomarkers for ASD and specific task states decoded for HCP. Our code is available at https://github.com/xxlya/BrainGNN_Pytorch.
理解哪些大脑区域与特定的神经障碍或认知刺激有关,一直是神经影像学研究的一个重要领域。我们提出了 BrainGNN,这是一个图神经网络(GNN)框架,用于分析功能磁共振成像(fMRI)并发现神经生物标志物。考虑到脑图的特殊性质,我们设计了新颖的基于感兴趣区域的图卷积(Ra-GConv)层,利用 fMRI 的拓扑和功能信息。受医学图像分析透明度的需求的启发,我们的 BrainGNN 包含基于感兴趣区域的选择池化层(R-pool),突出显著的感兴趣区域(图中的节点),以便我们可以推断出哪些感兴趣区域对预测很重要。此外,我们提出了正则化项 - 单位损失、TopK 池化(TPK)损失和组级一致性(GLC)损失,对池化结果进行正则化,以鼓励合理的感兴趣区域选择,并提供灵活性,以鼓励完全个体模式或与组级数据一致的模式。我们在两个独立的 fMRI 数据集上应用了 BrainGNN 框架:自闭症谱系障碍(ASD)的 fMRI 数据集和人类连接组计划(HCP)900 个受试者数据集。我们研究了超参数的不同选择,并表明 BrainGNN 在四个不同的评估指标方面优于替代的 fMRI 图像分析方法。获得的社区聚类和显著感兴趣区域检测结果与先前神经影像学衍生的 ASD 生物标志物和 HCP 特定任务状态解码的证据高度一致。我们的代码可在 https://github.com/xxlya/BrainGNN_Pytorch 上获得。