Suppr超能文献

[基于深度学习的甲状腺疾病超声诊断研究综述]

[Review on ultrasonographic diagnosis of thyroid diseases based on deep learning].

作者信息

Qi Fengyuan, Qiu Min, Wei Guohui

机构信息

College of Intelligence and Information Engineering, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China.

Department of Thyroid Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272007, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Oct 25;40(5):1027-1032. doi: 10.7507/1001-5515.202302049.

Abstract

In recent years, the incidence of thyroid diseases has increased significantly and ultrasound examination is the first choice for the diagnosis of thyroid diseases. At the same time, the level of medical image analysis based on deep learning has been rapidly improved. Ultrasonic image analysis has made a series of milestone breakthroughs, and deep learning algorithms have shown strong performance in the field of medical image segmentation and classification. This article first elaborates on the application of deep learning algorithms in thyroid ultrasound image segmentation, feature extraction, and classification differentiation. Secondly, it summarizes the algorithms for deep learning processing multimodal ultrasound images. Finally, it points out the problems in thyroid ultrasound image diagnosis at the current stage and looks forward to future development directions. This study can promote the application of deep learning in clinical ultrasound image diagnosis of thyroid, and provide reference for doctors to diagnose thyroid disease.

摘要

近年来,甲状腺疾病的发病率显著上升,超声检查是甲状腺疾病诊断的首选方法。与此同时,基于深度学习的医学图像分析水平得到了快速提高。超声图像分析取得了一系列具有里程碑意义的突破,深度学习算法在医学图像分割和分类领域表现出强大的性能。本文首先阐述了深度学习算法在甲状腺超声图像分割、特征提取和分类鉴别中的应用。其次,总结了深度学习处理多模态超声图像的算法。最后,指出了现阶段甲状腺超声图像诊断中存在的问题,并展望了未来的发展方向。本研究可促进深度学习在甲状腺临床超声图像诊断中的应用,为医生诊断甲状腺疾病提供参考。

相似文献

1
[Review on ultrasonographic diagnosis of thyroid diseases based on deep learning].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Oct 25;40(5):1027-1032. doi: 10.7507/1001-5515.202302049.
2
Cascade marker removal algorithm for thyroid ultrasound images.
Med Biol Eng Comput. 2020 Nov;58(11):2641-2656. doi: 10.1007/s11517-020-02216-7. Epub 2020 Aug 25.
3
5
Joint Detection of Tap and CEA Based on Deep Learning Medical Image Segmentation: Risk Prediction of Thyroid Cancer.
J Healthc Eng. 2021 May 31;2021:5920035. doi: 10.1155/2021/5920035. eCollection 2021.
6
High-Frequency Ultrasound Dataset for Deep Learning-Based Image Quality Assessment.
Sensors (Basel). 2022 Feb 14;22(4):1478. doi: 10.3390/s22041478.
7
Pathology Image Analysis Using Segmentation Deep Learning Algorithms.
Am J Pathol. 2019 Sep;189(9):1686-1698. doi: 10.1016/j.ajpath.2019.05.007. Epub 2019 Jun 11.
8
Real-time denoising of ultrasound images based on deep learning.
Med Biol Eng Comput. 2022 Aug;60(8):2229-2244. doi: 10.1007/s11517-022-02573-5. Epub 2022 Jun 7.
10
Using deep-learning algorithms to classify fetal brain ultrasound images as normal or abnormal.
Ultrasound Obstet Gynecol. 2020 Oct;56(4):579-587. doi: 10.1002/uog.21967.

引用本文的文献

1
[A review on depth perception techniques in organoid images].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Oct 25;41(5):1053-1061. doi: 10.7507/1001-5515.202404036.

本文引用的文献

1
Self-supervised multi-modal fusion network for multi-modal thyroid ultrasound image diagnosis.
Comput Biol Med. 2022 Nov;150:106164. doi: 10.1016/j.compbiomed.2022.106164. Epub 2022 Oct 5.
2
Multimodal ultrasound imaging: A method to improve the accuracy of diagnosing thyroid TI-RADS 4 nodules.
J Clin Ultrasound. 2022 Nov;50(9):1345-1352. doi: 10.1002/jcu.23352. Epub 2022 Sep 28.
3
Diagnosis of anomalies based on hybrid features extraction in thyroid images.
Multimed Tools Appl. 2023;82(3):3859-3877. doi: 10.1007/s11042-022-13433-7. Epub 2022 Jul 18.
4
Overview of the 2022 WHO Classification of Thyroid Neoplasms.
Endocr Pathol. 2022 Mar;33(1):27-63. doi: 10.1007/s12022-022-09707-3. Epub 2022 Mar 14.
5
Deep multimodal learning for lymph node metastasis prediction of primary thyroid cancer.
Phys Med Biol. 2022 Feb 1;67(3). doi: 10.1088/1361-6560/ac4c47.
6
Semantic consistency generative adversarial network for cross-modality domain adaptation in ultrasound thyroid nodule classification.
Appl Intell (Dordr). 2022;52(9):10369-10383. doi: 10.1007/s10489-021-03025-7. Epub 2022 Jan 13.
7
TNSNet: Thyroid nodule segmentation in ultrasound imaging using soft shape supervision.
Comput Methods Programs Biomed. 2022 Mar;215:106600. doi: 10.1016/j.cmpb.2021.106600. Epub 2021 Dec 22.
9
Radiomics in Differentiated Thyroid Cancer and Nodules: Explorations, Application, and Limitations.
Cancers (Basel). 2021 May 18;13(10):2436. doi: 10.3390/cancers13102436.
10
Intelligent Diagnosis of Thyroid Ultrasound Imaging Using an Ensemble of Deep Learning Methods.
Medicina (Kaunas). 2021 Apr 19;57(4):395. doi: 10.3390/medicina57040395.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验