Suppr超能文献

分化型甲状腺癌及结节中的影像组学:探索、应用及局限性

Radiomics in Differentiated Thyroid Cancer and Nodules: Explorations, Application, and Limitations.

作者信息

Cao Yuan, Zhong Xiao, Diao Wei, Mu Jingshi, Cheng Yue, Jia Zhiyun

机构信息

Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610040, China.

Department of Radiology, West China Hospital of Sichuan University, Chengdu 610040, China.

出版信息

Cancers (Basel). 2021 May 18;13(10):2436. doi: 10.3390/cancers13102436.

Abstract

Radiomics is an emerging technique that allows the quantitative extraction of high-throughput features from single or multiple medical images, which cannot be observed directly with the naked eye, and then applies to machine learning approaches to construct classification or prediction models. This method makes it possible to evaluate tumor status and to differentiate malignant from benign tumors or nodules in a more objective manner. To date, the classification and prediction value of radiomics in DTC patients have been inconsistent. Herein, we summarize the available literature on the classification and prediction performance of radiomics-based DTC in various imaging techniques. More specifically, we reviewed the recent literature to discuss the capacity of radiomics to predict lymph node (LN) metastasis, distant metastasis, tumor extrathyroidal extension, disease-free survival, and B-Raf proto-oncogene serine/threonine kinase (BRAF) mutation and differentiate malignant from benign nodules. This review discusses the application and limitations of the radiomics process, and explores its ability to improve clinical decision-making with the hope of emphasizing its utility for DTC patients.

摘要

放射组学是一种新兴技术,它能够从单张或多张医学图像中定量提取肉眼无法直接观察到的高通量特征,然后应用于机器学习方法来构建分类或预测模型。该方法使得以更客观的方式评估肿瘤状态以及区分恶性肿瘤与良性肿瘤或结节成为可能。迄今为止,放射组学在分化型甲状腺癌(DTC)患者中的分类和预测价值一直存在不一致的情况。在此,我们总结了关于基于放射组学的DTC在各种成像技术中的分类和预测性能的现有文献。更具体地说,我们回顾了近期文献,以探讨放射组学预测淋巴结(LN)转移、远处转移、肿瘤甲状腺外侵犯、无病生存期以及B-Raf原癌基因丝氨酸/苏氨酸激酶(BRAF)突变的能力,以及区分恶性与良性结节的能力。本综述讨论了放射组学过程的应用和局限性,并探讨了其改善临床决策的能力,希望强调其对DTC患者的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68c0/8157383/ad7109858620/cancers-13-02436-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验