Suppr超能文献

使用功能化碳纳米管去除亚甲蓝的人工智能模型

Artificial intelligence models for methylene blue removal using functionalized carbon nanotubes.

作者信息

Mijwel Abd-Alkhaliq Salih, Ahmed Ali Najah, Afan Haitham Abdulmohsin, Alayan Haiyam Mohammed, Sherif Mohsen, Elshafie Ahmed

机构信息

Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional (UNITEN), 43000, Kajang, Selangor, Malaysia.

Institute of Energy Infrastructure, Universiti Tenaga Nasional (UNITEN), 43000, Kajang, Selangor, Malaysia.

出版信息

Sci Rep. 2023 Oct 25;13(1):18260. doi: 10.1038/s41598-023-45032-3.

Abstract

This study aims to assess the practicality of utilizing artificial intelligence (AI) to replicate the adsorption capability of functionalized carbon nanotubes (CNTs) in the context of methylene blue (MB) removal. The process of generating the carbon nanotubes involved the pyrolysis of acetylene under conditions that were determined to be optimal. These conditions included a reaction temperature of 550 °C, a reaction time of 37.3 min, and a gas ratio (H/CH) of 1.0. The experimental data pertaining to MB adsorption on CNTs was found to be extremely well-suited to the Pseudo-second-order model, as evidenced by an R2 value of 0.998, an X2 value of 5.75, a q value of 163.93 (mg/g), and a K2 value of 6.34 × 10-4 (g/mg min).The MB adsorption system exhibited the best agreement with the Langmuir model, yielding an R of 0.989, R value of 0.031, q value of 250.0 mg/g. The results of AI modelling demonstrated a remarkable performance using a recurrent neural network, achieving with the highest correlation coefficient of R = 0.9471. Additionally, the feed-forward neural network yielded a correlation coefficient of R2 = 0.9658. The modeling results hold promise for accurately predicting the adsorption capacity of CNTs, which can potentially enhance their efficiency in removing methylene blue from wastewater.

摘要

本研究旨在评估在去除亚甲基蓝(MB)的背景下,利用人工智能(AI)复制功能化碳纳米管(CNT)吸附能力的实用性。生成碳纳米管的过程涉及在确定为最佳的条件下对乙炔进行热解。这些条件包括反应温度550℃、反应时间37.3分钟和气体比率(H/CH)1.0。与CNT上MB吸附相关的实验数据被发现非常适合伪二级模型,R2值为0.998、X2值为5.75、q值为163.93(mg/g)以及K2值为6.34×10-4(g/mg·min)证明了这一点。MB吸附系统与朗缪尔模型的一致性最佳,R为0.989、R值为0.031、q值为250.0 mg/g。人工智能建模结果表明,使用递归神经网络具有显著性能,相关系数最高达到R = 0.9471。此外,前馈神经网络的相关系数为R2 = 0.9658。建模结果有望准确预测CNT的吸附容量,这可能会提高其从废水中去除亚甲基蓝的效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73cc/10600184/2e9a932bdea7/41598_2023_45032_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验