Suppr超能文献

用于增强亚甲基蓝去除的内生多壁碳纳米管复合材料的单纯形格子设计与决策树优化

Simplex-lattice design and decision tree optimization of endophytic -multi-walled carbon nanotube composite for enhanced methylene blue removal.

作者信息

Abo-Neima Sahar E, Elsehly Emad M, Al-Otibi Fatimah O, El-Metwally Mohammed M, Helmy Yosra A, Eldadamony Noha M, Saber WesamEldin I A, El-Morsi Adel A

机构信息

Physics Department, Faculty of Science, Damanhour University, Damanhour, 22511, Egypt.

Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia.

出版信息

Heliyon. 2024 Oct 29;10(21):e39949. doi: 10.1016/j.heliyon.2024.e39949. eCollection 2024 Nov 15.

Abstract

This study investigates a novel approach for enhancing methylene blue (MB) removal from water using a composite of endophytic mate and multi-walled carbon nanotubes (MWCNTs). For the first time, a unique combination of simplex-lattice design and decision tree learning algorithm was employed to optimize MB removal. This innovative approach effectively identified the optimal composite ratio of hyphal mate (0.5354 g/L) and MWCNTs (0.4646 g/L) for maximizing MB removal, which achieved remarkable removal efficiency ranging from 63.50 to 95.78 % depending on the combination used. The DT model further demonstrated promising potential for predicting MB removal efficiency. SEM revealed a unique hybrid material formed by the intertwining or entrapment of MWCNTs within the hyphal network of Trichoderma mate. FT-IR analysis confirmed the presence of novel functional groups on the MWCNTs' surface at 2438.79 and 528.25 cm, likely due to interactions with the endophytic fungi's biomolecules. These functional groups presumably act as reducing and stabilizing agents, promoting efficient MB adsorption. This research paves the way for utilizing the combined biological and chemical approach (fungal biomass and MWCNTs) in bioremediation applications. The findings suggest significant potential for practical applications in wastewater treatment, providing an eco-friendly and cost-effective method for dye removal. Furthermore, the proposed method shows promise for scaling up to industrial wastewater treatment and applicability in resource-limited settings, offering a sustainable solution for global water pollution challenges. Further investigations with larger datasets incorporating additional influencing factors are necessary to refine the predictive power of the DT model for practical applications.

摘要

本研究探讨了一种使用内生真菌菌丝体与多壁碳纳米管(MWCNTs)的复合材料增强水中亚甲基蓝(MB)去除效果的新方法。首次采用单纯形格子设计和决策树学习算法的独特组合来优化MB去除效果。这种创新方法有效地确定了菌丝体(0.5354 g/L)和MWCNTs(0.4646 g/L)的最佳复合比例,以实现MB去除的最大化,根据所使用的组合,其去除效率显著,范围为63.50%至95.78%。DT模型进一步证明了预测MB去除效率的良好潜力。扫描电子显微镜(SEM)显示,MWCNTs在木霉属真菌菌丝网络内相互缠绕或截留形成了独特的混合材料。傅里叶变换红外光谱(FT-IR)分析证实,在2438.79和528.25 cm处MWCNTs表面存在新的官能团,这可能是由于与内生真菌生物分子的相互作用。这些官能团可能充当还原剂和稳定剂,促进MB的有效吸附。本研究为在生物修复应用中利用生物和化学相结合的方法(真菌生物质和MWCNTs)铺平了道路。研究结果表明在废水处理的实际应用中具有巨大潜力,为染料去除提供了一种环保且经济高效的方法。此外,所提出的方法在扩大到工业废水处理以及在资源有限的环境中的适用性方面显示出前景,为全球水污染挑战提供了可持续的解决方案。有必要使用包含更多影响因素的更大数据集进行进一步研究,以提高DT模型在实际应用中的预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7664/11566670/ec46188a6f8e/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验