Suppr超能文献

基于人工智能方法的悬沙负荷预测建模:以热带地区为例

Suspended sediment load prediction modelling based on artificial intelligence methods: The tropical region as a case study.

作者信息

Allawi Mohammed Falah, Sulaiman Sadeq Oleiwi, Sayl Khamis Naba, Sherif Mohsen, El-Shafie Ahmed

机构信息

Dams and Water Resources Engineering Department, College of Engineering, University Of Anbar, Ramadi, Iraq.

National Water and Energy Center, United Arab Emirate University, P.O. Box, 15551, Al Ain, United Arab Emirates.

出版信息

Heliyon. 2023 Jul 20;9(8):e18506. doi: 10.1016/j.heliyon.2023.e18506. eCollection 2023 Aug.

Abstract

The impact of the suspended sediment load (SSL) on environmental health, agricultural operations, and water resources planning, is significant. The deposit of SSL restricts the streamflow region, affecting aquatic life migration and finally causing a river course shift. As a result, data on suspended sediments and their fluctuations are essential for a number of authorities especially for water resources decision makers. SSL prediction is often difficult due to a number of issues such as site-specific data, site-specific models, lack of several substantial components to use in prediction, and complexity its pattern. In the past two decades, many machine learning algorithms have shown huge potential for SSL river prediction. However, these models did not provide very reliable results, which led to the conclusion that the accuracy of SSL prediction should be improved. As a result, in order to solve past concerns, this research proposes a Long Short-Term Memory (LSTM) model for SSL prediction. The proposed model was applied for SSL prediction in Johor River located in Malaysia. The study allocated data for suspended sediment load and river flow for period 2010 to 2020. In the current research, four alternative models-Multi-Layer Perceptron (MLP) neural network, Support Vector Regression (SVR), Random Forest (RF), and Long Short-term Memory (LSTM) were investigated to predict the suspended sediment load. The proposed model attained a high correlation value between predicted and actual SSL (0.97), with a minimum RMSE (148.4 ton/day and a minimum MAE (33.43 ton/day). and can thus be generalized for application in similar rivers around the world.

摘要

悬沙负荷(SSL)对环境健康、农业生产和水资源规划具有重大影响。SSL的沉积限制了水流区域,影响水生生物的迁移,最终导致河道变迁。因此,悬沙及其波动数据对于许多部门,特别是水资源决策者来说至关重要。由于存在诸如特定地点数据、特定地点模型、缺乏用于预测的若干重要组成部分以及其模式复杂等问题,SSL预测往往很困难。在过去二十年中,许多机器学习算法在SSL河流预测方面显示出巨大潜力。然而,这些模型并未提供非常可靠的结果,由此得出结论,应提高SSL预测的准确性。因此,为了解决过去的问题,本研究提出了一种用于SSL预测的长短期记忆(LSTM)模型。该模型应用于马来西亚柔佛河的SSL预测。该研究分配了2010年至2020年期间的悬沙负荷和河流流量数据。在当前研究中,研究了四种替代模型——多层感知器(MLP)神经网络、支持向量回归(SVR)、随机森林(RF)和长短期记忆(LSTM),以预测悬沙负荷。所提出的模型在预测的和实际的SSL之间获得了较高的相关值(0.97),具有最小均方根误差(148.4吨/天)和最小平均绝对误差(33.43吨/天),因此可以推广应用于世界上类似的河流。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59b9/10374919/69339b900d88/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验