Suppr超能文献

基于多扫描卷积神经网络和 PSSM 图谱的无对齐方法鉴定 SNARE 蛋白。

Identifying SNARE Proteins Using an Alignment-Free Method Based on Multiscan Convolutional Neural Network and PSSM Profiles.

机构信息

International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.

College of Information & Communication Technology, Can Tho University, Can Tho 90000, Viet Nam.

出版信息

J Chem Inf Model. 2022 Oct 10;62(19):4820-4826. doi: 10.1021/acs.jcim.2c01034. Epub 2022 Sep 27.

Abstract

: SNARE proteins play a vital role in membrane fusion and cellular physiology and pathological processes. Many potential therapeutics for mental diseases or even cancer based on SNAREs are also developed. Therefore, there is a dire need to predict the SNAREs for further manipulation of these essential proteins, which demands new and efficient approaches. : Some computational frameworks were proposed to tackle the hurdles of biological methods, which take plenty of time and budget to conduct the identification of SNAREs. However, the performances of existing frameworks were insufficiently satisfied, as they failed to retain the SNARE sequence order and capture the mass hidden features from SNAREs. This paper proposed a novel model constructed on the multiscan convolutional neural network (CNN) and position-specific scoring matrix (PSSM) profiles to address these limitations. We employed and trained our model on the benchmark dataset with fivefold cross-validation and two different independent datasets. : Overall, the multiscan CNN was cross-validated on the training set and excelled in the SNARE classification reaching 0.963 in AUC and 0.955 in AUPRC. On top of that, with the sensitivity, specificity, accuracy, and MCC of 0.842, 0.968, 0.955, and 0.767, respectively, our proposed framework outperformed previous models in the SNARE recognition task. It is truly believed that our model can contribute to the discrimination of SNARE proteins and general proteins.

摘要

: SNARE 蛋白在膜融合和细胞生理及病理过程中起着至关重要的作用。许多基于 SNARE 的精神疾病甚至癌症的潜在治疗方法也在开发中。因此,迫切需要预测 SNARE 以进一步操纵这些必需的蛋白质,这需要新的、有效的方法。 : 已经提出了一些计算框架来解决生物方法的障碍,这些方法需要大量的时间和预算来进行 SNARE 的鉴定。然而,现有的框架的性能并不令人满意,因为它们未能保留 SNARE 序列顺序并从 SNARE 中捕获大量隐藏特征。本文提出了一种基于多扫描卷积神经网络(CNN)和位置特异性评分矩阵(PSSM)的新型模型来解决这些限制。我们在基准数据集上使用五重交叉验证和两个不同的独立数据集对我们的模型进行了训练和评估。 : 总的来说,多扫描 CNN 在训练集上进行了交叉验证,在 SNARE 分类方面表现出色,AUC 达到 0.963,AUPRC 达到 0.955。除此之外,我们的框架在 SNARE 识别任务中的敏感性、特异性、准确性和 MCC 分别为 0.842、0.968、0.955 和 0.767,优于之前的模型。我们确实相信,我们的模型可以有助于 SNARE 蛋白和一般蛋白的区分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/254e/9554904/78326b58766a/ci2c01034_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验