Suppr超能文献

基于纤维素的多功能聚盐作为锂金属聚合物电池聚合物基体的可行性

Feasibility of Multifunctional Cellulose-Based Polysalt as a Polymer Matrix for Li Metal Polymer Batteries.

作者信息

Ranque Pierre, Boaretto Nicola, Perez-Furundarena Haritz, Arrou-Vignod Hugo, Gomez Castresana Kerman, Bonilla Francisco Javier, Cid Rosalía, López Del Amo Juan Miguel, Armand Michel, Devaraj Shanmukaraj

机构信息

Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, Vitoria-Gasteiz 01510, Spain.

Department of Applied Chemistry and Science and Technology of Polymeric Materials, Faculty of Chemistry, University of the Basque Country (UPV/EHU), San Sebastian 20018, Spain.

出版信息

ACS Appl Mater Interfaces. 2023 Nov 8;15(44):51089-51099. doi: 10.1021/acsami.3c10977. Epub 2023 Oct 26.

Abstract

Li metal secondary batteries known for their high energy and power density are the much-awaited energy storage systems owing to the high specific capacity of Li metal. However, due to the instability of Li metal with common Li-ion battery electrolytes, a combination with a polymer electrolyte seems to be an effective strategy to alleviate the safety issues of employing Li metal and provide design conformity to the system. Current trends show improvements in different aspects, such as improving ionic conductivity, single-ion conductivity, mechanical stability, and electrochemical stability. A combination of all these properties has been a bottleneck for the development of polymer electrolytes for safe and efficient operation of all solid-state batteries. Herein, a multifunctional polysalt has been synthesized from green and sustainable materials, namely, ethyl cellulose, plasticized with adiponitrile, that contributes to meeting the critical properties enabling high compatibility with Li metal and a quasi-single-ion-conducting property while simultaneously acting as a matrix/filler for efficient operation of the cells. This multifunctional polymer matrix inhibits further decomposition of nitrile-based plasticizers on Li metal anodes with the formation of a favorable Li metal anode interface, thus enabling the utilization of high-voltage stable nitrile-based plasticizers (4.2 V) to be implemented as an electrolyte component for realization of high-voltage Li metal anode polymer batteries.

摘要

锂金属二次电池以其高能量和功率密度而闻名,由于锂金属的高比容量,它是备受期待的储能系统。然而,由于锂金属与普通锂离子电池电解质的不稳定性,与聚合物电解质结合似乎是缓解使用锂金属的安全问题并使系统符合设计要求的有效策略。当前的趋势显示在不同方面有所改进,例如提高离子电导率、单离子电导率、机械稳定性和电化学稳定性。所有这些性能的结合一直是用于全固态电池安全高效运行的聚合物电解质开发的瓶颈。在此,一种多功能聚盐由绿色可持续材料合成,即乙基纤维素,并与己二腈增塑,这有助于满足关键性能,实现与锂金属的高相容性和准单离子传导性能,同时作为基质/填料实现电池的高效运行。这种多功能聚合物基质抑制了腈基增塑剂在锂金属阳极上的进一步分解,形成了有利的锂金属阳极界面,从而能够将高压稳定的腈基增塑剂(4.2 V)用作电解质成分,以实现高压锂金属阳极聚合物电池。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验