Suppr超能文献

基于条件生成对抗网络的磁共振脑图像概率提取。

Probabilistic Brain Extraction in MR Images via Conditional Generative Adversarial Networks.

出版信息

IEEE Trans Med Imaging. 2024 Mar;43(3):1071-1088. doi: 10.1109/TMI.2023.3327942. Epub 2024 Mar 5.

Abstract

Brain extraction, or the task of segmenting the brain in MR images, forms an essential step for many neuroimaging applications. These include quantifying brain tissue volumes, monitoring neurological diseases, and estimating brain atrophy. Several algorithms have been proposed for brain extraction, including image-to-image deep learning methods that have demonstrated significant gains in accuracy. However, none of them account for the inherent uncertainty in brain extraction. Motivated by this, we propose a novel, probabilistic deep learning algorithm for brain extraction that recasts this task as a Bayesian inference problem and utilizes a conditional generative adversarial network (cGAN) to solve it. The input to the cGAN's generator is an MR image of the head, and the output is a collection of likely brain images drawn from a probability density conditioned on the input. These images are used to generate a pixel-wise mean image, serving as the estimate for the extracted brain, and a standard deviation image, which quantifies the uncertainty in the prediction. We test our algorithm on head MR images from five datasets: NFBS, CC359, LPBA, IBSR, and their combination. Our datasets are heterogeneous regarding multiple factors, including subjects (with and without symptoms), magnetic field strengths, and manufacturers. Our experiments demonstrate that the proposed approach is more accurate and robust than a widely used brain extraction tool and at least as accurate as the other deep learning methods. They also highlight the utility of quantifying uncertainty in downstream applications. Additional information and codes for our method are available at: https://github.com/bmri/bmri.

摘要

脑提取,即分割磁共振图像中的脑区,是许多神经影像学应用的基本步骤。这些应用包括量化脑组织体积、监测神经退行性疾病和估计脑萎缩。已经提出了几种脑提取算法,包括图像到图像的深度学习方法,这些方法在准确性方面取得了显著的提高。然而,它们都没有考虑到脑提取中的固有不确定性。受此启发,我们提出了一种新的概率深度学习算法来进行脑提取,将这个任务重新表述为贝叶斯推断问题,并利用条件生成对抗网络(cGAN)来解决它。cGAN 的生成器的输入是头部的磁共振图像,输出是一组可能的脑图像,这些图像是从输入条件下的概率密度中抽取的。这些图像用于生成一个像素级的均值图像,作为提取的脑区的估计,以及一个标准差图像,用于量化预测的不确定性。我们在来自五个数据集的头部磁共振图像上测试了我们的算法:NFBS、CC359、LPBA、IBSR 及其组合。我们的数据集在多个因素上是异构的,包括受检者(有症状和无症状)、磁场强度和制造商。我们的实验表明,与一种广泛使用的脑提取工具相比,所提出的方法更准确、更稳健,并且至少与其他深度学习方法一样准确。它们还突出了在下游应用中量化不确定性的效用。我们方法的更多信息和代码可在以下网址获取:https://github.com/bmri/bmri。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验