Suppr超能文献

利用条件生成对抗网络进行逐像素图像翻译来提高合成 FLAIR 图像的质量。

Improving the Quality of Synthetic FLAIR Images with Deep Learning Using a Conditional Generative Adversarial Network for Pixel-by-Pixel Image Translation.

机构信息

From the Departments of Radiology (A.H., Y.O., M.H., Y.T., S.F., C.A., K.K., R.I., S.K., T.M., L.C., A.W., M.Y.T., S.A.)

Department of Radiology (A.H., R.I., S.K., T.M.), Graduate School of Medicine, University of Tokyo, Tokyo, Japan.

出版信息

AJNR Am J Neuroradiol. 2019 Feb;40(2):224-230. doi: 10.3174/ajnr.A5927. Epub 2019 Jan 10.

Abstract

BACKGROUND AND PURPOSE

Synthetic FLAIR images are of lower quality than conventional FLAIR images. Here, we aimed to improve the synthetic FLAIR image quality using deep learning with pixel-by-pixel translation through conditional generative adversarial network training.

MATERIALS AND METHODS

Forty patients with MS were prospectively included and scanned (3T) to acquire synthetic MR imaging and conventional FLAIR images. Synthetic FLAIR images were created with the SyMRI software. Acquired data were divided into 30 training and 10 test datasets. A conditional generative adversarial network was trained to generate improved FLAIR images from raw synthetic MR imaging data using conventional FLAIR images as targets. The peak signal-to-noise ratio, normalized root mean square error, and the Dice index of MS lesion maps were calculated for synthetic and deep learning FLAIR images against conventional FLAIR images, respectively. Lesion conspicuity and the existence of artifacts were visually assessed.

RESULTS

The peak signal-to-noise ratio and normalized root mean square error were significantly higher and lower, respectively, in generated-versus-synthetic FLAIR images in aggregate intracranial tissues and all tissue segments (all < .001). The Dice index of lesion maps and visual lesion conspicuity were comparable between generated and synthetic FLAIR images ( = 1 and .59, respectively). Generated FLAIR images showed fewer granular artifacts ( = .003) and swelling artifacts (in all cases) than synthetic FLAIR images.

CONCLUSIONS

Using deep learning, we improved the synthetic FLAIR image quality by generating FLAIR images that have contrast closer to that of conventional FLAIR images and fewer granular and swelling artifacts, while preserving the lesion contrast.

摘要

背景与目的

合成 FLAIR 图像的质量低于常规 FLAIR 图像。在此,我们旨在通过使用条件生成对抗网络训练进行逐像素翻译,来提高合成 FLAIR 图像的质量。

材料与方法

前瞻性纳入 40 例 MS 患者,对其进行(3T)扫描,以获取合成磁共振成像和常规 FLAIR 图像。使用 SyMRI 软件生成合成 FLAIR 图像。采集的数据分为 30 个训练数据集和 10 个测试数据集。使用条件生成对抗网络,使用常规 FLAIR 图像作为目标,从原始合成磁共振成像数据中生成改进的 FLAIR 图像。针对常规 FLAIR 图像,分别计算合成和深度学习 FLAIR 图像的 MS 病变图的峰值信噪比、归一化均方根误差和 Dice 指数。对病变的可视性和伪影的存在进行评估。

结果

在总体颅内组织和所有组织段中,生成的 FLAIR 图像的峰值信噪比显著较高,而归一化均方根误差显著较低(均<0.001)。病变图的 Dice 指数和视觉病变的可视性在生成的和合成的 FLAIR 图像之间相当(分别为=1 和=0.59)。生成的 FLAIR 图像比合成的 FLAIR 图像显示更少的颗粒状伪影(=0.003)和肿胀伪影(在所有情况下)。

结论

通过使用深度学习生成与常规 FLAIR 图像对比度更接近且颗粒状和肿胀伪影更少的 FLAIR 图像,同时保留病变对比度,我们提高了合成 FLAIR 图像的质量。

相似文献

引用本文的文献

1
Exploring scenarios for implementing fast quantitative MRI.探索实施快速定量磁共振成像的方案。
Eur J Radiol Open. 2025 May 8;14:100658. doi: 10.1016/j.ejro.2025.100658. eCollection 2025 Jun.
2
Information-Theoretic Analysis of Multimodal Image Translation.多模态图像翻译的信息论分析
IEEE Trans Med Imaging. 2025 Aug;44(8):3210-3221. doi: 10.1109/TMI.2025.3559823.
4
Synthetic MR: Clinical applications in neuroradiology.合成磁共振成像:在神经放射学中的临床应用
Neuroradiology. 2025 Mar;67(3):509-527. doi: 10.1007/s00234-025-03547-8. Epub 2025 Jan 31.
9
Artificial intelligence applications in psychoradiology.人工智能在精神放射学中的应用。
Psychoradiology. 2021 Jul 2;1(2):94-107. doi: 10.1093/psyrad/kkab009. eCollection 2021 Jun.

本文引用的文献

3
MR fingerprinting Deep RecOnstruction NEtwork (DRONE).磁共振指纹成像深度重建网络(DRONE)。
Magn Reson Med. 2018 Sep;80(3):885-894. doi: 10.1002/mrm.27198. Epub 2018 Apr 6.
5
Deep learning with convolutional neural network in radiology.放射学中基于卷积神经网络的深度学习。
Jpn J Radiol. 2018 Apr;36(4):257-272. doi: 10.1007/s11604-018-0726-3. Epub 2018 Mar 1.
9
Generative Adversarial Networks for Noise Reduction in Low-Dose CT.生成对抗网络在低剂量 CT 中的噪声降低。
IEEE Trans Med Imaging. 2017 Dec;36(12):2536-2545. doi: 10.1109/TMI.2017.2708987. Epub 2017 May 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验