From the Departments of Radiology (A.H., Y.O., M.H., Y.T., S.F., C.A., K.K., R.I., S.K., T.M., L.C., A.W., M.Y.T., S.A.)
Department of Radiology (A.H., R.I., S.K., T.M.), Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
AJNR Am J Neuroradiol. 2019 Feb;40(2):224-230. doi: 10.3174/ajnr.A5927. Epub 2019 Jan 10.
Synthetic FLAIR images are of lower quality than conventional FLAIR images. Here, we aimed to improve the synthetic FLAIR image quality using deep learning with pixel-by-pixel translation through conditional generative adversarial network training.
Forty patients with MS were prospectively included and scanned (3T) to acquire synthetic MR imaging and conventional FLAIR images. Synthetic FLAIR images were created with the SyMRI software. Acquired data were divided into 30 training and 10 test datasets. A conditional generative adversarial network was trained to generate improved FLAIR images from raw synthetic MR imaging data using conventional FLAIR images as targets. The peak signal-to-noise ratio, normalized root mean square error, and the Dice index of MS lesion maps were calculated for synthetic and deep learning FLAIR images against conventional FLAIR images, respectively. Lesion conspicuity and the existence of artifacts were visually assessed.
The peak signal-to-noise ratio and normalized root mean square error were significantly higher and lower, respectively, in generated-versus-synthetic FLAIR images in aggregate intracranial tissues and all tissue segments (all < .001). The Dice index of lesion maps and visual lesion conspicuity were comparable between generated and synthetic FLAIR images ( = 1 and .59, respectively). Generated FLAIR images showed fewer granular artifacts ( = .003) and swelling artifacts (in all cases) than synthetic FLAIR images.
Using deep learning, we improved the synthetic FLAIR image quality by generating FLAIR images that have contrast closer to that of conventional FLAIR images and fewer granular and swelling artifacts, while preserving the lesion contrast.
合成 FLAIR 图像的质量低于常规 FLAIR 图像。在此,我们旨在通过使用条件生成对抗网络训练进行逐像素翻译,来提高合成 FLAIR 图像的质量。
前瞻性纳入 40 例 MS 患者,对其进行(3T)扫描,以获取合成磁共振成像和常规 FLAIR 图像。使用 SyMRI 软件生成合成 FLAIR 图像。采集的数据分为 30 个训练数据集和 10 个测试数据集。使用条件生成对抗网络,使用常规 FLAIR 图像作为目标,从原始合成磁共振成像数据中生成改进的 FLAIR 图像。针对常规 FLAIR 图像,分别计算合成和深度学习 FLAIR 图像的 MS 病变图的峰值信噪比、归一化均方根误差和 Dice 指数。对病变的可视性和伪影的存在进行评估。
在总体颅内组织和所有组织段中,生成的 FLAIR 图像的峰值信噪比显著较高,而归一化均方根误差显著较低(均<0.001)。病变图的 Dice 指数和视觉病变的可视性在生成的和合成的 FLAIR 图像之间相当(分别为=1 和=0.59)。生成的 FLAIR 图像比合成的 FLAIR 图像显示更少的颗粒状伪影(=0.003)和肿胀伪影(在所有情况下)。
通过使用深度学习生成与常规 FLAIR 图像对比度更接近且颗粒状和肿胀伪影更少的 FLAIR 图像,同时保留病变对比度,我们提高了合成 FLAIR 图像的质量。