IEEE Trans Neural Syst Rehabil Eng. 2023;31:4329-4337. doi: 10.1109/TNSRE.2023.3327907. Epub 2023 Nov 7.
Decoding the user's natural grasp intent enhances the application of wearable robots, improving the daily lives of individuals with disabilities. Electroencephalogram (EEG) and eye movements are two natural representations when users generate grasp intent in their minds, with current studies decoding human intent by fusing EEG and eye movement signals. However, the neural correlation between these two signals remains unclear. Thus, this paper aims to explore the consistency between EEG and eye movement in natural grasping intention estimation. Specifically, six grasp intent pairs are decoded by combining feature vectors and utilizing the optimal classifier. Extensive experimental results indicate that the coupling between the EEG and eye movements intent patterns remains intact when the user generates a natural grasp intent, and concurrently, the EEG pattern is consistent with the eye movements pattern across the task pairs. Moreover, the findings reveal a solid connection between EEG and eye movements even when taking into account cortical EEG (originating from the visual cortex or motor cortex) and the presence of a suboptimal classifier. Overall, this work uncovers the coupling correlation between EEG and eye movements and provides a reference for intention estimation.
解码用户的自然抓握意图增强了可穿戴机器人的应用,改善了残疾人士的日常生活。当用户在脑海中产生抓握意图时,脑电图 (EEG) 和眼球运动是两种自然表现形式,目前的研究通过融合 EEG 和眼动信号来解码人类意图。然而,这两种信号之间的神经相关性尚不清楚。因此,本文旨在探索自然抓握意图估计中 EEG 和眼动之间的一致性。具体来说,通过结合特征向量和使用最优分类器,对六对抓握意图进行解码。大量实验结果表明,当用户产生自然抓握意图时,EEG 和眼球运动意图模式之间的耦合保持不变,同时,在任务对之间,EEG 模式与眼球运动模式一致。此外,即使考虑到皮质 EEG(源自视觉皮层或运动皮层)和存在次优分类器,研究结果也揭示了 EEG 和眼球运动之间的牢固联系。总的来说,这项工作揭示了 EEG 和眼球运动之间的耦合相关性,为意图估计提供了参考。