Suppr超能文献

从单次试验脑电图探索人类自主运动过程中运动意图分类的计算方法。

Exploration of computational methods for classification of movement intention during human voluntary movement from single trial EEG.

作者信息

Bai Ou, Lin Peter, Vorbach Sherry, Li Jiang, Furlani Steve, Hallett Mark

机构信息

Human Motor Control Section, Medical Neurological Branch, National Institute of Neurological Disorders, NIH, Bethesda, MD 20892, USA.

出版信息

Clin Neurophysiol. 2007 Dec;118(12):2637-55. doi: 10.1016/j.clinph.2007.08.025. Epub 2007 Oct 29.

Abstract

OBJECTIVE

To explore effective combinations of computational methods for the prediction of movement intention preceding the production of self-paced right and left hand movements from single trial scalp electroencephalogram (EEG).

METHODS

Twelve naïve subjects performed self-paced movements consisting of three key strokes with either hand. EEG was recorded from 128 channels. The exploration was performed offline on single trial EEG data. We proposed that a successful computational procedure for classification would consist of spatial filtering, temporal filtering, feature selection, and pattern classification. A systematic investigation was performed with combinations of spatial filtering using principal component analysis (PCA), independent component analysis (ICA), common spatial patterns analysis (CSP), and surface Laplacian derivation (SLD); temporal filtering using power spectral density estimation (PSD) and discrete wavelet transform (DWT); pattern classification using linear Mahalanobis distance classifier (LMD), quadratic Mahalanobis distance classifier (QMD), Bayesian classifier (BSC), multi-layer perceptron neural network (MLP), probabilistic neural network (PNN), and support vector machine (SVM). A robust multivariate feature selection strategy using a genetic algorithm was employed.

RESULTS

The combinations of spatial filtering using ICA and SLD, temporal filtering using PSD and DWT, and classification methods using LMD, QMD, BSC and SVM provided higher performance than those of other combinations. Utilizing one of the better combinations of ICA, PSD and SVM, the discrimination accuracy was as high as 75%. Further feature analysis showed that beta band EEG activity of the channels over right sensorimotor cortex was most appropriate for discrimination of right and left hand movement intention.

CONCLUSIONS

Effective combinations of computational methods provide possible classification of human movement intention from single trial EEG. Such a method could be the basis for a potential brain-computer interface based on human natural movement, which might reduce the requirement of long-term training.

SIGNIFICANCE

Effective combinations of computational methods can classify human movement intention from single trial EEG with reasonable accuracy.

摘要

目的

探索计算方法的有效组合,用于从单次试验头皮脑电图(EEG)预测自定节奏的右手和左手运动产生之前的运动意图。

方法

12名未受过训练的受试者用任意一只手进行由三次按键组成的自定节奏运动。从128个通道记录EEG。在离线状态下对单次试验EEG数据进行探索。我们提出,一个成功的分类计算程序应包括空间滤波、时间滤波、特征选择和模式分类。使用主成分分析(PCA)、独立成分分析(ICA)、共同空间模式分析(CSP)和表面拉普拉斯导数(SLD)进行空间滤波组合;使用功率谱密度估计(PSD)和离散小波变换(DWT)进行时间滤波;使用线性马氏距离分类器(LMD)、二次马氏距离分类器(QMD)、贝叶斯分类器(BSC)、多层感知器神经网络(MLP)、概率神经网络(PNN)和支持向量机(SVM)进行模式分类,进行了系统研究。采用了一种使用遗传算法的稳健多变量特征选择策略。

结果

使用ICA和SLD进行空间滤波、使用PSD和DWT进行时间滤波以及使用LMD、QMD、BSC和SVM进行分类方法的组合比其他组合具有更高的性能。利用ICA、PSD和SVM的较好组合之一,辨别准确率高达75%。进一步的特征分析表明,右侧感觉运动皮层上通道的β波段EEG活动最适合于辨别右手和左手运动意图。

结论

计算方法的有效组合为从单次试验EEG中对人类运动意图进行分类提供了可能。这样一种方法可能是基于人类自然运动的潜在脑机接口的基础,这可能会减少长期训练的需求。

意义

计算方法的有效组合能够以合理的准确率从单次试验EEG中对人类运动意图进行分类。

相似文献

1
Exploration of computational methods for classification of movement intention during human voluntary movement from single trial EEG.
Clin Neurophysiol. 2007 Dec;118(12):2637-55. doi: 10.1016/j.clinph.2007.08.025. Epub 2007 Oct 29.
2
Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach.
Artif Intell Med. 2012 Jun;55(2):117-26. doi: 10.1016/j.artmed.2012.02.001. Epub 2012 Apr 12.
3
Single trial detection of human movement intentions from SAM-filtered MEG signals for a high performance two-dimensional BCI.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:524-7. doi: 10.1109/IEMBS.2009.5333632.
4
Combining spatial filters for the classification of single-trial EEG in a finger movement task.
IEEE Trans Biomed Eng. 2007 May;54(5):821-31. doi: 10.1109/TBME.2006.889206.
5
Prediction of gait intention from pre-movement EEG signals: a feasibility study.
J Neuroeng Rehabil. 2020 Apr 16;17(1):50. doi: 10.1186/s12984-020-00675-5.
8
EEG-based classification of fast and slow hand movements using Wavelet-CSP algorithm.
IEEE Trans Biomed Eng. 2013 Aug;60(8):2123-32. doi: 10.1109/TBME.2013.2248153. Epub 2013 Feb 21.
10
Wavlet phase-locking based binary classification of hand movement directions from EEG.
J Neural Eng. 2018 Dec;15(6):066008. doi: 10.1088/1741-2552/aadeed. Epub 2018 Sep 5.

引用本文的文献

1
Single-Trial Electroencephalography Discrimination of Real, Regulated, Isometric Wrist Extension and Wrist Flexion.
Biomimetics (Basel). 2025 Mar 18;10(3):187. doi: 10.3390/biomimetics10030187.
2
Assessing the effectiveness of spatial PCA on SVM-based decoding of EEG data.
Neuroimage. 2024 Jun;293:120625. doi: 10.1016/j.neuroimage.2024.120625. Epub 2024 May 3.
4
Rate control deficits during pinch grip and ankle dorsiflexion in early-stage Parkinson's disease.
PLoS One. 2023 Mar 3;18(3):e0282203. doi: 10.1371/journal.pone.0282203. eCollection 2023.
7
Prediction of gait intention from pre-movement EEG signals: a feasibility study.
J Neuroeng Rehabil. 2020 Apr 16;17(1):50. doi: 10.1186/s12984-020-00675-5.
8
Influential Factors of an Asynchronous BCI for Movement Intention Detection.
Comput Math Methods Med. 2020 Mar 23;2020:8573754. doi: 10.1155/2020/8573754. eCollection 2020.

本文引用的文献

1
EMG and EOG artifacts in brain computer interface systems: A survey.
Clin Neurophysiol. 2007 Mar;118(3):480-94. doi: 10.1016/j.clinph.2006.10.019. Epub 2006 Dec 13.
2
Seperability of four-class motor imagery data using independent components analysis.
J Neural Eng. 2006 Sep;3(3):208-16. doi: 10.1088/1741-2560/3/3/003. Epub 2006 Jun 27.
3
The Berlin Brain-Computer Interface: EEG-based communication without subject training.
IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):147-52. doi: 10.1109/TNSRE.2006.875557.
4
BCI Meeting 2005--workshop on BCI signal processing: feature extraction and translation.
IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):135-8. doi: 10.1109/TNSRE.2006.875637.
5
Different classification techniques considering brain computer interface applications.
J Neural Eng. 2006 Jun;3(2):139-44. doi: 10.1088/1741-2560/3/2/008. Epub 2006 May 16.
6
Very high frequency oscillations (VHFO) as a predictor of movement intentions.
Neuroimage. 2006 Aug 1;32(1):170-9. doi: 10.1016/j.neuroimage.2006.02.041. Epub 2006 May 2.
7
A comparison of common spatial patterns with complex band power features in a four-class BCI experiment.
IEEE Trans Biomed Eng. 2006 Apr;53(4):642-51. doi: 10.1109/TBME.2006.870237.
8
Classification of movement intention by spatially filtered electromagnetic inverse solutions.
Phys Med Biol. 2006 Apr 21;51(8):1971-89. doi: 10.1088/0031-9155/51/8/002. Epub 2006 Mar 30.
9
Movement-related cortical potentials in primary lateral sclerosis.
Ann Neurol. 2006 Apr;59(4):682-90. doi: 10.1002/ana.20803.
10
Robust classification of EEG signal for brain-computer interface.
IEEE Trans Neural Syst Rehabil Eng. 2006 Mar;14(1):24-9. doi: 10.1109/TNSRE.2005.862695.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验