Suppr超能文献

DO-SA&R:用于基于点的3D目标检测的远距离目标增强集抽象与回归

DO-SA&R: Distant Object Augmented Set Abstraction and Regression for Point-Based 3D Object Detection.

作者信息

He Xuan, Wang Zian, Lin Jiacheng, Nai Ke, Yuan Jin, Li Zhiyong

出版信息

IEEE Trans Image Process. 2023;32:5852-5864. doi: 10.1109/TIP.2023.3326394. Epub 2023 Nov 1.

Abstract

Point-based 3D detection approaches usually suffer from the severe point sampling imbalance problem between foreground and background. We observe that prior works have attempted to alleviate this imbalance by emphasizing foreground sampling. However, even adequate foreground sampling may be extremely unbalanced between nearby and distant objects, yielding unsatisfactory performance in detecting distant objects. To tackle this issue, this paper first proposes a novel method named Distant Object Augmented Set Abstraction and Regression (DO-SA&R) to enhance distant object detection, which is vital for the timely response of decision-making systems like autonomous driving. Technically, our approach first designs DO-SA with novel distant object augmented farthest point sampling (DO-FPS) to emphasize sampling on distant objects by leveraging both object-dependent and depth-dependent information. Then, we propose distant object augmented regression to reweight all the instance boxes for strengthening regression training on distant objects. In practice, the proposed DO-SA&R can be easily embedded into the existing modules, yielding consistent performance improvements, especially on detecting distant objects. Extensive experiments are conducted on the popular KITTI, nuScenes and Waymo datasets, and DO-SA&R demonstrates superior performance, especially for distant object detection. Our code is available at https://github.com/mikasa3lili/DO-SAR.

摘要

基于点的三维检测方法通常会面临前景和背景之间严重的点采样不平衡问题。我们观察到,先前的工作试图通过强调前景采样来缓解这种不平衡。然而,即使进行了充分的前景采样,在近距和远距物体之间也可能极其不平衡,从而在检测远距物体时产生不尽人意的性能。为了解决这个问题,本文首先提出了一种名为远距物体增强集抽象与回归(DO-SA&R)的新方法来增强远距物体检测,这对于自动驾驶等决策系统的及时响应至关重要。从技术上讲,我们的方法首先设计了带有新型远距物体增强最远点采样(DO-FPS)的DO-SA,通过利用与物体相关和与深度相关的信息来强调对远距物体的采样。然后,我们提出远距物体增强回归来对所有实例框重新加权,以加强对远距物体的回归训练。在实践中,所提出的DO-SA&R可以很容易地嵌入到现有模块中,带来一致的性能提升,特别是在检测远距物体方面。我们在流行的KITTI、nuScenes和Waymo数据集上进行了广泛的实验,DO-SA&R展示了卓越的性能,尤其是在远距物体检测方面。我们的代码可在https://github.com/mikasa3lili/DO-SAR获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验