Suppr超能文献

基于人工智能的基线谱域光相干断层扫描视网膜层特征预测中心性浆液性脉络膜视网膜病变的病程。

BASELINE SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHIC RETINAL LAYER FEATURES IDENTIFIED BY ARTIFICIAL INTELLIGENCE PREDICT THE COURSE OF CENTRAL SEROUS CHORIORETINOPATHY.

机构信息

Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.

Bern Photographic Reading Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.

出版信息

Retina. 2024 Feb 1;44(2):316-323. doi: 10.1097/IAE.0000000000003965.

Abstract

PURPOSE

To identify optical coherence tomography (OCT) features to predict the course of central serous chorioretinopathy (CSC) with an artificial intelligence-based program.

METHODS

Multicenter, observational study with a retrospective design. Treatment-naïve patients with acute CSC and chronic CSC were enrolled. Baseline OCTs were examined by an artificial intelligence-developed platform (Discovery OCT Fluid and Biomarker Detector, RetinAI AG, Switzerland). Through this platform, automated retinal layer thicknesses and volumes, including intaretinal and subretinal fluid, and pigment epithelium detachment were measured. Baseline OCT features were compared between acute CSC and chronic CSC patients.

RESULTS

One hundred and sixty eyes of 144 patients with CSC were enrolled, of which 100 had chronic CSC and 60 acute CSC. Retinal layer analysis of baseline OCT scans showed that the inner nuclear layer, the outer nuclear layer, and the photoreceptor-retinal pigmented epithelium complex were significantly thicker at baseline in eyes with acute CSC in comparison with those with chronic CSC ( P < 0.001). Similarly, choriocapillaris and choroidal stroma and retinal thickness (RT) were thicker in acute CSC than chronic CSC eyes ( P = 0.001). Volume analysis revealed average greater subretinal fluid volumes in the acute CSC group in comparison with chronic CSC ( P = 0.041).

CONCLUSION

Optical coherence tomography features may be helpful to predict the clinical course of CSC. The baseline presence of an increased thickness in the outer retinal layers, choriocapillaris and choroidal stroma, and subretinal fluid volume seems to be associated with acute course of the disease.

摘要

目的

利用基于人工智能的程序,确定光学相干断层扫描(OCT)特征,以预测中心性浆液性脉络膜视网膜病变(CSC)的病程。

方法

这是一项多中心、回顾性观察研究。纳入了急性 CSC 和慢性 CSC 的未经治疗的患者。通过人工智能开发的平台(瑞士 RetinAI AG 的 Discovery OCT Fluid and Biomarker Detector)检查基线 OCT。通过该平台,自动测量视网膜层厚度和体积,包括视网膜内和视网膜下液以及色素上皮脱离。比较了急性 CSC 和慢性 CSC 患者的基线 OCT 特征。

结果

共纳入了 144 例 CSC 患者的 160 只眼,其中 100 只眼为慢性 CSC,60 只眼为急性 CSC。基线 OCT 扫描的视网膜层分析显示,与慢性 CSC 相比,急性 CSC 的内核层、外核层和光感受器-视网膜色素上皮复合体在基线时明显更厚(P < 0.001)。同样,脉络膜毛细血管和脉络膜基质以及视网膜厚度(RT)在急性 CSC 眼中也比慢性 CSC 眼中更厚(P = 0.001)。体积分析显示,与慢性 CSC 相比,急性 CSC 组的平均视网膜下液体积更大(P = 0.041)。

结论

OCT 特征可能有助于预测 CSC 的临床病程。在外视网膜层、脉络膜毛细血管和脉络膜基质以及视网膜下液体积增加的基线存在似乎与疾病的急性病程有关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验