Suppr超能文献

人工智能增强 OCT 生物标志物分析在黄斑下孔源性视网膜脱离患者中的应用。

Artificial Intelligence-Enhanced OCT Biomarkers Analysis in Macula-off Rhegmatogenous Retinal Detachment Patients.

机构信息

Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.

Department for BioMedical Research, University of Bern, Bern, Switzerland.

出版信息

Transl Vis Sci Technol. 2024 Oct 1;13(10):21. doi: 10.1167/tvst.13.10.21.

Abstract

PURPOSE

To identify optical coherence tomography (OCT) biomarkers for macula-off rhegmatogenous retinal detachment (RRD) with artificial intelligence (AI) and to correlate these biomarkers with functional outcomes.

METHODS

Patients with macula-off RRD treated with single vitrectomy and gas tamponade were included. OCT volumes, taken at 4 to 6 weeks and 1 year postoperative, were uploaded on an AI-derived platform (Discovery OCT Biomarker Detector; RetinAI AG, Bern, Switzerland), measuring different retinal layer thicknesses, including outer nuclear layer (ONL), photoreceptor and retinal pigmented epithelium (PR + RPE), intraretinal fluid (IRF), subretinal fluid, and biomarker probability detection, including hyperreflective foci (HF). A random forest model assessed the predictive factors for final best-corrected visual acuity (BCVA).

RESULTS

Fifty-nine patients (42 male, 17 female) were enrolled. Baseline BCVA was 0.5 logarithmic minimum angle of resolution (logMAR) ± 0.1, significantly improving to 0.3 ± 0.1 logMAR at the final visit (P < 0.001). Average thickness analysis indicated a significant increase after the last follow-up visit for ONL (from 95.16 ± 5.47 µm to 100.8 ± 5.27 µm, P = 0.0007) and PR + RPE thicknesses (60.9 ± 2.6 µm to 66.2 ± 1.8 µm, P = 0.0001). Average occurrence rate of HF was 0.12 ± 0.06 at initial visit and 0.08 ± 0.05 at last follow-up visit (P = 0.0093). Random forest model revealed baseline BCVA as the most critical predictor for final BCVA, followed by ONL thickness, HF, and IRF presence at the initial visit.

CONCLUSIONS

Increased ONL and PR-RPE thickness associate with better outcomes, while HF presence indicates poorer results, with initial BCVA remaining a primary visual predictor.

TRANSLATIONAL RELEVANCE

The study underscores the role of novel biomarkers like HF in understanding visual function in macula-off RRD.

摘要

目的

利用人工智能(AI)识别孔源性视网膜脱离(RRD)黄斑脱离的光相干断层扫描(OCT)生物标志物,并将这些生物标志物与功能结果相关联。

方法

纳入接受单次玻璃体切除术和气体填充治疗的黄斑脱离 RRD 患者。在术后 4 至 6 周和 1 年时,对 OCT 体积进行拍摄,并上传到 AI 衍生平台(Discovery OCT Biomarker Detector;RetinAI AG,瑞士伯尔尼),测量不同视网膜层的厚度,包括外核层(ONL)、光感受器和视网膜色素上皮(PR+RPE)、视网膜内液(IRF)、视网膜下液以及生物标志物概率检测,包括高反射焦点(HF)。随机森林模型评估了最终最佳矫正视力(BCVA)的预测因素。

结果

共纳入 59 例患者(42 例男性,17 例女性)。基线 BCVA 为 0.5 对数最小分辨角(logMAR)±0.1,最终随访时显著提高至 0.3±0.1logMAR(P<0.001)。平均厚度分析表明,ONL(从 95.16±5.47µm 增加至 100.8±5.27µm,P=0.0007)和 PR+RPE 厚度(从 60.9±2.6µm 增加至 66.2±1.8µm,P=0.0001)在末次随访时显著增加。HF 的平均发生率在初次就诊时为 0.12±0.06,在末次随访时为 0.08±0.05(P=0.0093)。随机森林模型显示,基线 BCVA 是最终 BCVA 的最关键预测因子,其次是 ONL 厚度、HF 和初始就诊时的 IRF 存在。

结论

ONL 和 PR-RPE 厚度增加与更好的结果相关,而 HF 的存在表明结果较差,初始 BCVA 仍然是主要的视觉预测因子。

翻译后的文本

目的

利用人工智能(AI)识别孔源性视网膜脱离(RRD)黄斑脱离的光相干断层扫描(OCT)生物标志物,并将这些生物标志物与功能结果相关联。

方法

纳入接受单次玻璃体切除术和气体填充治疗的黄斑脱离 RRD 患者。在术后 4 至 6 周和 1 年时,对 OCT 体积进行拍摄,并上传到 AI 衍生平台(Discovery OCT Biomarker Detector;RetinAI AG,瑞士伯尔尼),测量不同视网膜层的厚度,包括外核层(ONL)、光感受器和视网膜色素上皮(PR+RPE)、视网膜内液(IRF)、视网膜下液以及生物标志物概率检测,包括高反射焦点(HF)。随机森林模型评估了最终最佳矫正视力(BCVA)的预测因素。

结果

共纳入 59 例患者(42 例男性,17 例女性)。基线 BCVA 为 0.5 对数最小分辨角(logMAR)±0.1,最终随访时显著提高至 0.3±0.1logMAR(P<0.001)。平均厚度分析表明,ONL(从 95.16±5.47µm 增加至 100.8±5.27µm,P=0.0007)和 PR+RPE 厚度(从 60.9±2.6µm 增加至 66.2±1.8µm,P=0.0001)在末次随访时显著增加。HF 的平均发生率在初次就诊时为 0.12±0.06,在末次随访时为 0.08±0.05(P=0.0093)。随机森林模型显示,基线 BCVA 是最终 BCVA 的最关键预测因子,其次是 ONL 厚度、HF 和初始就诊时的 IRF 存在。

结论

ONL 和 PR-RPE 厚度增加与更好的结果相关,而 HF 的存在表明结果较差,初始 BCVA 仍然是主要的视觉预测因子。

解析:这是一段关于医学研究的文本,主要内容为利用人工智能(AI)识别孔源性视网膜脱离(RRD)黄斑脱离的光相干断层扫描(OCT)生物标志物,并将这些生物标志物与功能结果相关联。

  • 句子 1:PURPOSE: To identify optical coherence tomography (OCT) biomarkers for macula-off rhegmatogenous retinal detachment (RRD) with artificial intelligence (AI) and to correlate these biomarkers with functional outcomes.

  • 译文:目的:利用人工智能(AI)识别孔源性视网膜脱离(RRD)黄斑脱离的光相干断层扫描(OCT)生物标志物,并将这些生物标志物与功能结果相关联。

  • 句子 2:METHODS: Patients with macula-off RRD treated with single vitrectomy and gas tamponade were included. OCT volumes, taken at 4 to 6 weeks and 1 year postoperative, were uploaded on an AI-derived platform (Discovery OCT Biomarker Detector; RetinAI AG, Bern, Switzerland), measuring different retinal layer thicknesses, including outer nuclear layer (ONL), photoreceptor and retinal pigmented epithelium (PR + RPE), intraretinal fluid (IRF), subretinal fluid, and biomarker probability detection, including hyperreflective foci (HF). A random forest model assessed the predictive factors for final best-corrected visual acuity (BCVA).

  • 译文:方法:纳入接受单次玻璃体切除术和气体填充治疗的黄斑脱离 RRD 患者。在术后 4 至 6 周和 1 年时,对 OCT 体积进行拍摄,并上传到 AI 衍生平台(Discovery OCT Biomarker Detector;RetinAI AG,瑞士伯尔尼),测量不同视网膜层的厚度,包括外核层(ONL)、光感受器和视网膜色素上皮(PR+RPE)、视网膜内液(IRF)、视网膜下液以及生物标志物概率检测,包括高反射焦点(HF)。随机森林模型评估了最终最佳矫正视力(BCVA)的预测因素。

  • 句子 3:Fifty-nine patients (42 male, 17 female) were enrolled. Baseline BCVA was 0.5 logarithmic minimum angle of resolution (logMAR) ± 0.1, significantly improving to 0.3 ± 0.1 logMAR at the final visit (P < 0.001). Average thickness analysis indicated a significant increase after the last follow-up visit for ONL (from 95.16 ± 5.47 µm to 100.8 ± 5.27 µm, P = 0.0007) and PR + RPE thicknesses (60.9 ± 2.6 µm to 66.2 ± 1.8 µm, P = 0.0001). Average occurrence rate of HF was 0.12 ± 0.06 at initial visit and 0.08 ± 0.05 at last follow-up visit (P = 0.0093). Random forest model revealed baseline BCVA as the most critical predictor for final BCVA, followed by ONL thickness, HF, and IRF presence at the initial visit.

  • 译文:共纳入 59 例患者(42 例男性,17 例女性)。基线 BCVA 为 0.5 对数最小分辨角(logMAR)±0.1,最终随访时显著提高至 0.3±0.1logMAR(P<0.001)。平均厚度分析表明,ONL(从 95.16±5.47µm 增加至 100.8±5.27µm,P=0.0007)和 PR+RPE 厚度(从 60.9±2.6µm 增加至 66.2±1.8µm,P=0.0001)在末次随访时显著增加。HF 的平均发生率在初次就诊时为 0.12±0.06,在末次随访时为 0.08±0.05(P=0.0093)。随机森林模型显示,基线 BCVA 是最终 BCVA 的最关键预测因子,其次是 ONL 厚度、HF 和初始就诊时的 IRF 存在。

  • 句子 4:CONCLUSIONS: Increased ONL and PR-RPE thickness associate with better outcomes, while HF presence indicates poorer results, with initial BCVA remaining a primary visual predictor.

  • 译文:结论:ONL 和 PR-RPE 厚度增加与更好的结果相关,而 HF 的存在表明结果较差,初始 BCVA 仍然是主要的视觉预测因子。

  • 句子 5:TRANSLATIONAL RELEVANCE: The study underscores the role of novel biomarkers like HF in understanding visual function in macula-off RRD.

  • 译文:解析:翻译后的文本:转化相关性:该研究强调了像 HF 这样的新型生物标志物在理解黄斑脱离 RRD 中的视觉功能的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a74c/11472884/9480ccadb2a0/tvst-13-10-21-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验