Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
Department for BioMedical Research, University of Bern, Bern, Switzerland.
Transl Vis Sci Technol. 2024 Oct 1;13(10):21. doi: 10.1167/tvst.13.10.21.
To identify optical coherence tomography (OCT) biomarkers for macula-off rhegmatogenous retinal detachment (RRD) with artificial intelligence (AI) and to correlate these biomarkers with functional outcomes.
Patients with macula-off RRD treated with single vitrectomy and gas tamponade were included. OCT volumes, taken at 4 to 6 weeks and 1 year postoperative, were uploaded on an AI-derived platform (Discovery OCT Biomarker Detector; RetinAI AG, Bern, Switzerland), measuring different retinal layer thicknesses, including outer nuclear layer (ONL), photoreceptor and retinal pigmented epithelium (PR + RPE), intraretinal fluid (IRF), subretinal fluid, and biomarker probability detection, including hyperreflective foci (HF). A random forest model assessed the predictive factors for final best-corrected visual acuity (BCVA).
Fifty-nine patients (42 male, 17 female) were enrolled. Baseline BCVA was 0.5 logarithmic minimum angle of resolution (logMAR) ± 0.1, significantly improving to 0.3 ± 0.1 logMAR at the final visit (P < 0.001). Average thickness analysis indicated a significant increase after the last follow-up visit for ONL (from 95.16 ± 5.47 µm to 100.8 ± 5.27 µm, P = 0.0007) and PR + RPE thicknesses (60.9 ± 2.6 µm to 66.2 ± 1.8 µm, P = 0.0001). Average occurrence rate of HF was 0.12 ± 0.06 at initial visit and 0.08 ± 0.05 at last follow-up visit (P = 0.0093). Random forest model revealed baseline BCVA as the most critical predictor for final BCVA, followed by ONL thickness, HF, and IRF presence at the initial visit.
Increased ONL and PR-RPE thickness associate with better outcomes, while HF presence indicates poorer results, with initial BCVA remaining a primary visual predictor.
The study underscores the role of novel biomarkers like HF in understanding visual function in macula-off RRD.
利用人工智能(AI)识别孔源性视网膜脱离(RRD)黄斑脱离的光相干断层扫描(OCT)生物标志物,并将这些生物标志物与功能结果相关联。
纳入接受单次玻璃体切除术和气体填充治疗的黄斑脱离 RRD 患者。在术后 4 至 6 周和 1 年时,对 OCT 体积进行拍摄,并上传到 AI 衍生平台(Discovery OCT Biomarker Detector;RetinAI AG,瑞士伯尔尼),测量不同视网膜层的厚度,包括外核层(ONL)、光感受器和视网膜色素上皮(PR+RPE)、视网膜内液(IRF)、视网膜下液以及生物标志物概率检测,包括高反射焦点(HF)。随机森林模型评估了最终最佳矫正视力(BCVA)的预测因素。
共纳入 59 例患者(42 例男性,17 例女性)。基线 BCVA 为 0.5 对数最小分辨角(logMAR)±0.1,最终随访时显著提高至 0.3±0.1logMAR(P<0.001)。平均厚度分析表明,ONL(从 95.16±5.47µm 增加至 100.8±5.27µm,P=0.0007)和 PR+RPE 厚度(从 60.9±2.6µm 增加至 66.2±1.8µm,P=0.0001)在末次随访时显著增加。HF 的平均发生率在初次就诊时为 0.12±0.06,在末次随访时为 0.08±0.05(P=0.0093)。随机森林模型显示,基线 BCVA 是最终 BCVA 的最关键预测因子,其次是 ONL 厚度、HF 和初始就诊时的 IRF 存在。
ONL 和 PR-RPE 厚度增加与更好的结果相关,而 HF 的存在表明结果较差,初始 BCVA 仍然是主要的视觉预测因子。
利用人工智能(AI)识别孔源性视网膜脱离(RRD)黄斑脱离的光相干断层扫描(OCT)生物标志物,并将这些生物标志物与功能结果相关联。
纳入接受单次玻璃体切除术和气体填充治疗的黄斑脱离 RRD 患者。在术后 4 至 6 周和 1 年时,对 OCT 体积进行拍摄,并上传到 AI 衍生平台(Discovery OCT Biomarker Detector;RetinAI AG,瑞士伯尔尼),测量不同视网膜层的厚度,包括外核层(ONL)、光感受器和视网膜色素上皮(PR+RPE)、视网膜内液(IRF)、视网膜下液以及生物标志物概率检测,包括高反射焦点(HF)。随机森林模型评估了最终最佳矫正视力(BCVA)的预测因素。
共纳入 59 例患者(42 例男性,17 例女性)。基线 BCVA 为 0.5 对数最小分辨角(logMAR)±0.1,最终随访时显著提高至 0.3±0.1logMAR(P<0.001)。平均厚度分析表明,ONL(从 95.16±5.47µm 增加至 100.8±5.27µm,P=0.0007)和 PR+RPE 厚度(从 60.9±2.6µm 增加至 66.2±1.8µm,P=0.0001)在末次随访时显著增加。HF 的平均发生率在初次就诊时为 0.12±0.06,在末次随访时为 0.08±0.05(P=0.0093)。随机森林模型显示,基线 BCVA 是最终 BCVA 的最关键预测因子,其次是 ONL 厚度、HF 和初始就诊时的 IRF 存在。
ONL 和 PR-RPE 厚度增加与更好的结果相关,而 HF 的存在表明结果较差,初始 BCVA 仍然是主要的视觉预测因子。
解析:这是一段关于医学研究的文本,主要内容为利用人工智能(AI)识别孔源性视网膜脱离(RRD)黄斑脱离的光相干断层扫描(OCT)生物标志物,并将这些生物标志物与功能结果相关联。
句子 1:PURPOSE: To identify optical coherence tomography (OCT) biomarkers for macula-off rhegmatogenous retinal detachment (RRD) with artificial intelligence (AI) and to correlate these biomarkers with functional outcomes.
译文:目的:利用人工智能(AI)识别孔源性视网膜脱离(RRD)黄斑脱离的光相干断层扫描(OCT)生物标志物,并将这些生物标志物与功能结果相关联。
句子 2:METHODS: Patients with macula-off RRD treated with single vitrectomy and gas tamponade were included. OCT volumes, taken at 4 to 6 weeks and 1 year postoperative, were uploaded on an AI-derived platform (Discovery OCT Biomarker Detector; RetinAI AG, Bern, Switzerland), measuring different retinal layer thicknesses, including outer nuclear layer (ONL), photoreceptor and retinal pigmented epithelium (PR + RPE), intraretinal fluid (IRF), subretinal fluid, and biomarker probability detection, including hyperreflective foci (HF). A random forest model assessed the predictive factors for final best-corrected visual acuity (BCVA).
译文:方法:纳入接受单次玻璃体切除术和气体填充治疗的黄斑脱离 RRD 患者。在术后 4 至 6 周和 1 年时,对 OCT 体积进行拍摄,并上传到 AI 衍生平台(Discovery OCT Biomarker Detector;RetinAI AG,瑞士伯尔尼),测量不同视网膜层的厚度,包括外核层(ONL)、光感受器和视网膜色素上皮(PR+RPE)、视网膜内液(IRF)、视网膜下液以及生物标志物概率检测,包括高反射焦点(HF)。随机森林模型评估了最终最佳矫正视力(BCVA)的预测因素。
句子 3:Fifty-nine patients (42 male, 17 female) were enrolled. Baseline BCVA was 0.5 logarithmic minimum angle of resolution (logMAR) ± 0.1, significantly improving to 0.3 ± 0.1 logMAR at the final visit (P < 0.001). Average thickness analysis indicated a significant increase after the last follow-up visit for ONL (from 95.16 ± 5.47 µm to 100.8 ± 5.27 µm, P = 0.0007) and PR + RPE thicknesses (60.9 ± 2.6 µm to 66.2 ± 1.8 µm, P = 0.0001). Average occurrence rate of HF was 0.12 ± 0.06 at initial visit and 0.08 ± 0.05 at last follow-up visit (P = 0.0093). Random forest model revealed baseline BCVA as the most critical predictor for final BCVA, followed by ONL thickness, HF, and IRF presence at the initial visit.
译文:共纳入 59 例患者(42 例男性,17 例女性)。基线 BCVA 为 0.5 对数最小分辨角(logMAR)±0.1,最终随访时显著提高至 0.3±0.1logMAR(P<0.001)。平均厚度分析表明,ONL(从 95.16±5.47µm 增加至 100.8±5.27µm,P=0.0007)和 PR+RPE 厚度(从 60.9±2.6µm 增加至 66.2±1.8µm,P=0.0001)在末次随访时显著增加。HF 的平均发生率在初次就诊时为 0.12±0.06,在末次随访时为 0.08±0.05(P=0.0093)。随机森林模型显示,基线 BCVA 是最终 BCVA 的最关键预测因子,其次是 ONL 厚度、HF 和初始就诊时的 IRF 存在。
句子 4:CONCLUSIONS: Increased ONL and PR-RPE thickness associate with better outcomes, while HF presence indicates poorer results, with initial BCVA remaining a primary visual predictor.
译文:结论:ONL 和 PR-RPE 厚度增加与更好的结果相关,而 HF 的存在表明结果较差,初始 BCVA 仍然是主要的视觉预测因子。
句子 5:TRANSLATIONAL RELEVANCE: The study underscores the role of novel biomarkers like HF in understanding visual function in macula-off RRD.
译文:解析:翻译后的文本:转化相关性:该研究强调了像 HF 这样的新型生物标志物在理解黄斑脱离 RRD 中的视觉功能的作用。