Suppr超能文献

使用经济高效的基本培养基从甘油中经济地生产吩嗪-1-羧酸。

Economical Production of Phenazine-1-carboxylic Acid from Glycerol by Using Cost-Effective Minimal Medium.

作者信息

Li Yu-Xuan, Yue Sheng-Jie, Zheng Yi-Fan, Huang Peng, Nie Yan-Fang, Hao Xiang-Rui, Zhang Hong-Yan, Wang Wei, Hu Hong-Bo, Zhang Xue-Hong

机构信息

State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.

Shanghai Nong Le Biological Products Company Limited (NLBP), Shanghai 200240, China.

出版信息

Biology (Basel). 2023 Sep 27;12(10):1292. doi: 10.3390/biology12101292.

Abstract

Phenazine compounds are widely used in agricultural control and the medicine industry due to their high inhibitory activity against pathogens and antitumor activity. The green and sustainable method of synthesizing phenazine compounds through microbial fermentation often requires a complex culture medium containing tryptone and yeast extract, and its cost is relatively high, which greatly limits the large-scale industrial production of phenazine compounds by fermentation. The aim of this study was to develop a cost-effective minimal medium for the efficient synthesis of phenazine compounds by . Through testing the minimum medium commonly used by , an ME medium for with a high production of phenazine compounds was obtained. Then, the components of the ME medium and the other medium were compared and replaced to verify the beneficial promoting effect of Fe and NH on phenazine compounds. A cost-effective general defined medium (GDM) using glycerol as the sole carbon source was obtained by optimizing the composition of the ME medium. Using the GDM, the production of phenazine compounds by reached 1073.5 mg/L, which was 1.3 times that achieved using a complex medium, while the cost of the GDM was only 10% that of a complex medium (e.g., the KB medium). Finally, by engineering the glycerol metabolic pathway, the titer of phenazine-1-carboxylic acid reached the highest level achieved using a minimum medium so far. This work demonstrates how we systematically analyzed and optimized the composition of the medium and integrated a metabolic engineering method to obtain the most cost-effective fermentation strategy.

摘要

吩嗪化合物因其对病原体具有高抑制活性和抗肿瘤活性而广泛应用于农业防治和医药行业。通过微生物发酵合成吩嗪化合物的绿色可持续方法通常需要含有胰蛋白胨和酵母提取物的复杂培养基,且成本相对较高,这极大地限制了通过发酵大规模工业化生产吩嗪化合物。本研究的目的是开发一种具有成本效益的基本培养基,用于高效合成吩嗪化合物。通过测试常用的基本培养基,获得了一种用于吩嗪化合物高产的ME培养基。然后,对ME培养基和其他培养基的成分进行比较和替换,以验证铁和铵对吩嗪化合物的有益促进作用。通过优化ME培养基的组成,获得了一种以甘油为唯一碳源的具有成本效益的通用限定培养基(GDM)。使用GDM,吩嗪化合物的产量达到1073.5 mg/L,是使用复杂培养基时产量的1.3倍,而GDM的成本仅为复杂培养基(如KB培养基)的10%。最后,通过改造甘油代谢途径,吩嗪 - 1 - 羧酸的效价达到了目前使用基本培养基所达到的最高水平。这项工作展示了我们如何系统地分析和优化培养基的组成,并整合代谢工程方法以获得最具成本效益的发酵策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91e6/10604798/bd8e2dc1e94f/biology-12-01292-g001.jpg

相似文献

1
Economical Production of Phenazine-1-carboxylic Acid from Glycerol by Using Cost-Effective Minimal Medium.
Biology (Basel). 2023 Sep 27;12(10):1292. doi: 10.3390/biology12101292.
2
Enhanced biosynthesis of phenazine-1-carboxamide by Pseudomonas chlororaphis strains using statistical experimental designs.
World J Microbiol Biotechnol. 2018 Aug 9;34(9):129. doi: 10.1007/s11274-018-2501-0.
3
Biosynthesis and metabolic engineering of 1-hydroxyphenazine in Pseudomonas chlororaphis H18.
Microb Cell Fact. 2021 Dec 30;20(1):235. doi: 10.1186/s12934-021-01731-y.
4
Engineering of glycerol utilization in Pseudomonas chlororaphis GP72 for enhancing phenazine-1-carboxylic acid production.
World J Microbiol Biotechnol. 2020 Mar 10;36(3):49. doi: 10.1007/s11274-020-02824-3.
5
Metabolic reconstruction of Pseudomonas chlororaphis ATCC 9446 to understand its metabolic potential as a phenazine-1-carboxamide-producing strain.
Appl Microbiol Biotechnol. 2020 Dec;104(23):10119-10132. doi: 10.1007/s00253-020-10913-4. Epub 2020 Sep 28.
7
Development of Artificial Synthetic Pathway of Endophenazines in P3.
Biology (Basel). 2022 Feb 24;11(3):363. doi: 10.3390/biology11030363.
8
Metabolic Engineering of Qlu-1 for the Enhanced Production of Phenazine-1-carboxamide.
J Agric Food Chem. 2020 Dec 16;68(50):14832-14840. doi: 10.1021/acs.jafc.0c05746. Epub 2020 Dec 7.
9
Enhanced biosynthesis of arbutin by engineering shikimate pathway in Pseudomonas chlororaphis P3.
Microb Cell Fact. 2018 Nov 10;17(1):174. doi: 10.1186/s12934-018-1022-8.
10

引用本文的文献

1
Investigations of the Flavin-Dependent Monooxygenase PhzO Involved in Phenazine Biosynthesis.
Microb Biotechnol. 2025 Jun;18(6):e70186. doi: 10.1111/1751-7915.70186.
2
Microbial conversion of ethanol to high-value products: progress and challenges.
Biotechnol Biofuels Bioprod. 2024 Aug 19;17(1):115. doi: 10.1186/s13068-024-02546-w.

本文引用的文献

1
Exploring engineered vesiculation by Pseudomonas putida KT2440 for natural product biosynthesis.
Microb Biotechnol. 2024 Jan;17(1):e14312. doi: 10.1111/1751-7915.14312. Epub 2023 Jul 12.
2
Becoming settlers: Elements and mechanisms for surface colonization by Pseudomonas putida.
Environ Microbiol. 2023 Sep;25(9):1575-1593. doi: 10.1111/1462-2920.16385. Epub 2023 Apr 12.
3
Systematic engineering of Bacillus amyloliquefaciens for efficient production of poly-γ-glutamic acid from crude glycerol.
Bioresour Technol. 2022 Sep;359:127382. doi: 10.1016/j.biortech.2022.127382. Epub 2022 May 26.
4
Isolation and Biosynthesis of Phenazine-Polyketide Hybrids from sp. KIB-H483.
J Nat Prod. 2022 May 27;85(5):1324-1331. doi: 10.1021/acs.jnatprod.2c00067. Epub 2022 May 14.
5
Tissue remodeling by an opportunistic pathogen triggers allergic inflammation.
Immunity. 2022 May 10;55(5):895-911.e10. doi: 10.1016/j.immuni.2022.04.001. Epub 2022 Apr 27.
6
Metabolic engineering for valorization of macroalgae biomass.
Metab Eng. 2022 May;71:42-61. doi: 10.1016/j.ymben.2022.01.005. Epub 2022 Jan 22.
7
Synthesis, Crystal Structure and Bioactivity of Phenazine-1-carboxylic Acylhydrazone Derivatives.
Molecules. 2021 Sep 1;26(17):5320. doi: 10.3390/molecules26175320.
8
Redox-active antibiotics enhance phosphorus bioavailability.
Science. 2021 Mar 5;371(6533):1033-1037. doi: 10.1126/science.abd1515.
9
Engineering of glycerol utilization in Pseudomonas chlororaphis GP72 for enhancing phenazine-1-carboxylic acid production.
World J Microbiol Biotechnol. 2020 Mar 10;36(3):49. doi: 10.1007/s11274-020-02824-3.
10
A review on variation in crude glycerol composition, bio-valorization of crude and purified glycerol as carbon source for lipid production.
Bioresour Technol. 2019 Dec;293:122155. doi: 10.1016/j.biortech.2019.122155. Epub 2019 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验