Zhang Yi, Liu Yang, Zhao Yue, Wang Xu
College of Electrical and Computer Science, Jilin Jianzhu University, Changchun 130119, China.
Biomimetics (Basel). 2023 Oct 11;8(6):482. doi: 10.3390/biomimetics8060482.
This paper presents a hybrid algorithm based on the slime mould algorithm (SMA) and the mixed dandelion optimizer. The hybrid algorithm improves the convergence speed and prevents the algorithm from falling into the local optimal. (1) The Bernoulli chaotic mapping is added in the initialization phase to enrich the population diversity. (2) The Brownian motion and Lévy flight strategy are added to further enhance the global search ability and local exploitation performance of the slime mould. (3) The specular reflection learning is added in the late iteration to improve the population search ability and avoid falling into local optimality. The experimental results show that the convergence speed and precision of the improved algorithm are improved in the standard test functions. At last, this paper optimizes the parameters of the Extreme Learning Machine (ELM) model with the improved method and applies it to the power load forecasting problem. The effectiveness of the improved method in solving practical engineering problems is further verified.
本文提出了一种基于黏菌算法(SMA)和混合蒲公英优化器的混合算法。该混合算法提高了收敛速度,防止算法陷入局部最优。(1)在初始化阶段添加伯努利混沌映射以丰富种群多样性。(2)添加布朗运动和莱维飞行策略以进一步增强黏菌的全局搜索能力和局部开发性能。(3)在后期迭代中添加镜面反射学习以提高种群搜索能力并避免陷入局部最优。实验结果表明,改进算法在标准测试函数中的收敛速度和精度得到了提高。最后,本文用改进方法对极限学习机(ELM)模型的参数进行了优化,并将其应用于电力负荷预测问题。进一步验证了改进方法在解决实际工程问题中的有效性。