Suppr超能文献

具有随机中心学习和重启变异的混合黏菌与算术优化算法

Hybrid Slime Mold and Arithmetic Optimization Algorithm with Random Center Learning and Restart Mutation.

作者信息

Chen Hongmin, Wang Zhuo, Jia Heming, Zhou Xindong, Abualigah Laith

机构信息

Department of Information Engineering, Sanming University, Sanming 365004, China.

Prince Hussein Bin Abdullah College for Information Technology, Al Al-Bayt University, Mafraq 25113, Jordan.

出版信息

Biomimetics (Basel). 2023 Aug 28;8(5):396. doi: 10.3390/biomimetics8050396.

Abstract

The slime mold algorithm (SMA) and the arithmetic optimization algorithm (AOA) are two novel meta-heuristic optimization algorithms. Among them, the slime mold algorithm has a strong global search ability. Still, the oscillation effect in the later iteration stage is weak, making it difficult to find the optimal position in complex functions. The arithmetic optimization algorithm utilizes multiplication and division operators for position updates, which have strong randomness and good convergence ability. For the above, this paper integrates the two algorithms and adds a random central solution strategy, a mutation strategy, and a restart strategy. A hybrid slime mold and arithmetic optimization algorithm with random center learning and restart mutation (RCLSMAOA) is proposed. The improved algorithm retains the position update formula of the slime mold algorithm in the global exploration section. It replaces the convergence stage of the slime mold algorithm with the multiplication and division algorithm in the local exploitation stage. At the same time, the stochastic center learning strategy is adopted to improve the global search efficiency and the diversity of the algorithm population. In addition, the restart strategy and mutation strategy are also used to improve the convergence accuracy of the algorithm and enhance the later optimization ability. In comparison experiments, different kinds of test functions are used to test the specific performance of the improvement algorithm. We determine the final performance of the algorithm by analyzing experimental data and convergence images, using the Wilcoxon rank sum test and Friedman test. The experimental results show that the improvement algorithm, which combines the slime mold algorithm and arithmetic optimization algorithm, is effective. Finally, the specific performance of the improvement algorithm on practical engineering problems was evaluated.

摘要

黏菌算法(SMA)和算术优化算法(AOA)是两种新型的元启发式优化算法。其中,黏菌算法具有较强的全局搜索能力。然而,其在后期迭代阶段的振荡效果较弱,导致在复杂函数中难以找到最优位置。算术优化算法利用乘法和除法运算符进行位置更新,具有较强的随机性和良好的收敛能力。基于此,本文将两种算法进行融合,并添加了随机中心解策略、变异策略和重启策略。提出了一种具有随机中心学习和重启变异的混合黏菌与算术优化算法(RCLSMAOA)。改进算法在全局探索部分保留了黏菌算法的位置更新公式,在局部开发阶段用乘除算法取代了黏菌算法的收敛阶段。同时,采用随机中心学习策略提高全局搜索效率和算法种群的多样性。此外,还使用了重启策略和变异策略来提高算法的收敛精度,增强后期优化能力。在对比实验中,使用不同类型的测试函数来测试改进算法的具体性能。通过分析实验数据和收敛图像,利用威尔科克森秩和检验和弗里德曼检验来确定算法的最终性能。实验结果表明,将黏菌算法和算术优化算法相结合的改进算法是有效的。最后,评估了改进算法在实际工程问题上的具体性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19eb/10526150/e0be0e4f0e18/biomimetics-08-00396-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验