Suppr超能文献

一种快速表征棉花单纤维特性的简化显微镜技术

A Simplified Microscopy Technique to Rapidly Characterize Individual Fiber Traits in Cotton.

作者信息

LaFave Quinn, Etukuri Shalini P, Courtney Chaney L, Kothari Neha, Rife Trevor W, Saski Christopher A

机构信息

Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA.

Cotton Incorporated, Cary, NC 27513, USA.

出版信息

Methods Protoc. 2023 Oct 3;6(5):92. doi: 10.3390/mps6050092.

Abstract

Recent advances in phenotyping techniques have substantially improved the ability to mitigate type-II errors typically associated with high variance in phenotyping data sets. In particular, the implementation of automated techniques such as the High-Volume Instrument (HVI) and the Advanced Fiber Information System (AFIS) have significantly enhanced the reproducibility and standardization of various fiber quality measurements in cotton. However, micronaire is not a direct measure of either maturity or fineness, lending to limitations. AFIS only provides a calculated form of fiber diameter, not a direct measure, justifying the need for a visual-based reference method. Obtaining direct measurements of individual fibers through cross-sectional analysis and electron microscopy is a widely accepted standard but is time-consuming and requires the use of hazardous chemicals and specialized equipment. In this study, we present a simplified fiber histology and image acquisition technique that is both rapid and reproducible. We also introduce an automated image analysis program that utilizes machine learning to differentiate good fibers from bad and to subsequently collect critical phenotypic measurements. These methods have the potential to improve the efficiency of cotton fiber phenotyping, allowing for greater precision in unravelling the genetic architecture of critical traits such as fiber diameter, shape, areas of the secondary cell wall/lumen, and others, ultimately leading to larger genetic gains in fiber quality and improvements in cotton.

摘要

表型分析技术的最新进展已大幅提高了减轻通常与表型数据集高变异性相关的II型错误的能力。特别是,诸如大容量仪器(HVI)和先进纤维信息系统(AFIS)等自动化技术的实施,显著提高了棉花各种纤维质量测量的可重复性和标准化。然而,马克隆值既不是成熟度也不是细度的直接测量值,存在局限性。AFIS仅提供纤维直径的计算形式,而非直接测量值,这证明了需要一种基于视觉的参考方法。通过横截面分析和电子显微镜获得单根纤维的直接测量值是一种广泛接受的标准,但耗时且需要使用危险化学品和专用设备。在本研究中,我们提出了一种既快速又可重复的简化纤维组织学和图像采集技术。我们还引入了一个自动化图像分析程序,该程序利用机器学习来区分好纤维和坏纤维,并随后收集关键的表型测量值。这些方法有可能提高棉花纤维表型分析的效率,在解析纤维直径、形状、次生细胞壁/腔面积等关键性状的遗传结构方面实现更高的精度,最终在纤维质量方面实现更大的遗传增益并改良棉花。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ede6/10609321/74ab8a19825b/mps-06-00092-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验