Department of Biochemistry, Pt. Jawahar Lal Nehru Memorial Medical College, Raipur, 492001, India.
Biol Futur. 2023 Dec;74(4):489-506. doi: 10.1007/s42977-023-00188-x. Epub 2023 Oct 27.
Antiviral peptides (AVPs) open new possibilities as an effective antiviral therapeutic in the current scenario of evolving drug-resistant viruses. Knowledge about the sequence and structure activity relationship in AVPs is still largely unknown. AVPs and antimicrobial peptides (AMPs) share several common features but as they target different life forms (living organisms and viruses), exploring the differential sequence features may facilitate in designing specific AVPs. The current work developed accurate prediction models for discriminating (a) AVPs from AMPs, (b) Coronaviridae AVPs from other virus family specific AVPs and (c) highly active AVPs (HAA) from lowly active AVPs (LAA). Further explainable machine learning methods (using model agnostic global interpretable methods) are utilized for exploring and interpreting the physicochemical spaces of AVPs, Coronaviridae AVPs and highly active AVPs. To further understand the association of physicochemical space distribution with pIC values, regression models were developed and analyzed using accumulated local effects and interaction strength analysis. An independent sample t-test is used to filter out the significant compositional differences between the smaller length HAA and longer length HAA groups. AVPs prefer lower charge/length ratio and basic residues in comparison with AMPs. Coronaviridae family-specific AVPs have lower propensities for basic amino acids, charge and preference for aspartic acid. Further there is prevalence for basic residues in lowly active AVPs as compared to highly active AVPs. Sequence order effects captured in terms of average amino acid pair distances proved to be more constructive in deciphering the sequences of AVPs.
抗病毒肽 (AVPs) 在当前不断出现耐药病毒的情况下,为开发有效的抗病毒治疗方法开辟了新的可能性。关于 AVPs 的序列和结构-活性关系的知识在很大程度上仍然未知。AVPs 和抗菌肽 (AMPs) 具有几个共同的特征,但由于它们针对不同的生命形式(生物体和病毒),探索差异序列特征可能有助于设计特定的 AVPs。目前的工作开发了用于区分 (a) AVPs 与 AMPs、(b) 冠状病毒科 AVPs 与其他病毒科特异性 AVPs 和 (c) 高活性 AVPs (HAA) 与低活性 AVPs (LAA) 的准确预测模型。进一步使用可解释的机器学习方法(使用模型不可知的全局可解释方法)来探索和解释 AVPs、冠状病毒科 AVPs 和高活性 AVPs 的物理化学空间。为了进一步了解物理化学空间分布与 pIC 值的关联,使用累积局部效应和相互作用强度分析开发和分析了回归模型。使用独立样本 t 检验过滤出较短长度 HAA 和较长长度 HAA 组之间的显著组成差异。与 AMPs 相比,AVPs 更喜欢低电荷/长度比和碱性残基。冠状病毒科特异性 AVPs 的碱性氨基酸、电荷和天冬氨酸偏好性较低。此外,与高活性 AVPs 相比,低活性 AVPs 中碱性残基更为普遍。从平均氨基酸对距离方面捕获的序列顺序效应被证明在破译 AVPs 的序列方面更具建设性。