Biological Sciences Division, Pacific Northwest National Laboratory, J4-18, P.O. Box 999, Richland, WA, 99354, USA.
Computing and Analytics Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, 99354, USA.
Sci Rep. 2020 Nov 6;10(1):19260. doi: 10.1038/s41598-020-76161-8.
The emergence of viral epidemics throughout the world is of concern due to the scarcity of available effective antiviral therapeutics. The discovery of new antiviral therapies is imperative to address this challenge, and antiviral peptides (AVPs) represent a valuable resource for the development of novel therapies to combat viral infection. We present a new machine learning model to distinguish AVPs from non-AVPs using the most informative features derived from the physicochemical and structural properties of their amino acid sequences. To focus on those features that are most likely to contribute to antiviral performance, we filter potential features based on their importance for classification. These feature selection analyses suggest that secondary structure is the most important peptide sequence feature for predicting AVPs. Our Feature-Informed Reduced Machine Learning for Antiviral Peptide Prediction (FIRM-AVP) approach achieves a higher accuracy than either the model with all features or current state-of-the-art single classifiers. Understanding the features that are associated with AVP activity is a core need to identify and design new AVPs in novel systems. The FIRM-AVP code and standalone software package are available at https://github.com/pmartR/FIRM-AVP with an accompanying web application at https://msc-viz.emsl.pnnl.gov/AVPR .
由于可用的有效抗病毒治疗药物稀缺,世界各地病毒流行病的出现令人担忧。发现新的抗病毒疗法对于应对这一挑战至关重要,而抗病毒肽 (AVP) 是开发新型疗法以对抗病毒感染的宝贵资源。我们提出了一种新的机器学习模型,使用从氨基酸序列理化和结构特性中得出的最具信息量的特征来区分 AVP 和非 AVP。为了专注于最有可能对抗病毒性能有贡献的特征,我们根据它们对分类的重要性过滤潜在特征。这些特征选择分析表明,二级结构是预测 AVP 的最重要的肽序列特征。我们的基于特征的抗病毒肽预测简化机器学习 (FIRM-AVP) 方法的准确性高于具有所有特征的模型或当前最先进的单分类器。了解与 AVP 活性相关的特征是识别和设计新的 AVP 在新系统中的核心需求。FIRM-AVP 代码和独立软件包可在 https://github.com/pmartR/FIRM-AVP 上获得,配套的网络应用程序可在 https://msc-viz.emsl.pnnl.gov/AVPR 上获得。