Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea; Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea.
Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea.
Comput Methods Programs Biomed. 2024 Jan;243:107878. doi: 10.1016/j.cmpb.2023.107878. Epub 2023 Oct 20.
Multichannel transcranial electrical stimulation (tES) is widely used to achieve improved stimulation focality. In the multichannel tES, the injection current pattern is generally determined through an optimization process with a finite element (FE) head model extracted from individual magnetic resonance images (MRIs). Although using an individual head model ensures the best outcome, acquiring MRIs of individual subjects in many practical applications is often difficult. Alternatively, a standard head model can be used to determine the optimal injection current pattern to stimulate a specific target; however, this may result in a relatively inaccurate delivery of stimulation current owing to the difference in individual anatomical structures. To address this issue, we propose a new approach for determining the injection current pattern using multiple head models, which can improve the stimulation focality compared to that achieved with a single standard head model.
Twenty FE head models were used to optimize the injection current patterns to stimulate three cortical regions that are widely considered targets for tES. The individual injection current patterns were then averaged to obtain each target's mean injection current pattern. The stimulation focality for each target was then calculated by applying different current patterns (the mean current, individual current, and current from a standard model).
Our results showed that the stimulation focality obtained using the mean injection current pattern was significantly higher than that obtained using the injection current pattern from a standard head model. Additionally, our results demonstrated that a minimum of 13 head models are required to determine mean current pattern, allowing for a higher stimulation focality than when using the current from a standard head model.
Hence, using multiple head models can provide a viable solution for improving the stimulation efficacy of multichannel tES when individual MRIs are not available.
多通道经颅电刺激(tES)被广泛用于实现刺激聚焦度的提高。在多通道 tES 中,注入电流模式通常通过使用从个体磁共振成像(MRI)中提取的有限元(FE)头模型的优化过程来确定。虽然使用个体头模型可确保最佳效果,但在许多实际应用中,获取个体受试者的 MRI 通常较为困难。或者,可以使用标准头模型来确定最佳注入电流模式以刺激特定目标;然而,由于个体解剖结构的差异,这可能导致刺激电流的相对不准确传递。为了解决这个问题,我们提出了一种使用多个头模型来确定注入电流模式的新方法,与使用单个标准头模型相比,该方法可以提高刺激聚焦度。
使用 20 个 FE 头模型来优化注入电流模式,以刺激三个被广泛认为是 tES 目标的皮质区域。然后对个体注入电流模式进行平均,以获得每个目标的平均注入电流模式。然后通过应用不同的电流模式(平均电流、个体电流和标准模型电流)来计算每个目标的刺激聚焦度。
我们的结果表明,使用平均注入电流模式获得的刺激聚焦度明显高于使用标准头模型的注入电流模式。此外,我们的结果表明,需要至少 13 个头模型来确定平均电流模式,从而可以获得比使用标准头模型电流更高的刺激聚焦度。
因此,当无法获得个体 MRI 时,使用多个头模型可以为提高多通道 tES 的刺激效果提供可行的解决方案。