Suppr超能文献

基于互易原理的经颅电神经调节

Transcranial Electrical Neuromodulation Based on the Reciprocity Principle.

作者信息

Fernández-Corazza Mariano, Turovets Sergei, Luu Phan, Anderson Erik, Tucker Don

机构信息

NeuroInformatics Center, University of Oregon, Eugene, OR, USA; LEICI Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales, Universidad Nacional de La Plata (UNLP), CONICET, La Plata, Argentina.

NeuroInformatics Center, University of Oregon, Eugene, OR, USA; Electrical Geodesics Inc., Eugene, OR, USA.

出版信息

Front Psychiatry. 2016 May 27;7:87. doi: 10.3389/fpsyt.2016.00087. eCollection 2016.

Abstract

A key challenge in multi-electrode transcranial electrical stimulation (TES) or transcranial direct current stimulation (tDCS) is to find a current injection pattern that delivers the necessary current density at a target and minimizes it in the rest of the head, which is mathematically modeled as an optimization problem. Such an optimization with the Least Squares (LS) or Linearly Constrained Minimum Variance (LCMV) algorithms is generally computationally expensive and requires multiple independent current sources. Based on the reciprocity principle in electroencephalography (EEG) and TES, it could be possible to find the optimal TES patterns quickly whenever the solution of the forward EEG problem is available for a brain region of interest. Here, we investigate the reciprocity principle as a guideline for finding optimal current injection patterns in TES that comply with safety constraints. We define four different trial cortical targets in a detailed seven-tissue finite element head model, and analyze the performance of the reciprocity family of TES methods in terms of electrode density, targeting error, focality, intensity, and directionality using the LS and LCMV solutions as the reference standards. It is found that the reciprocity algorithms show good performance comparable to the LCMV and LS solutions. Comparing the 128 and 256 electrode cases, we found that use of greater electrode density improves focality, directionality, and intensity parameters. The results show that reciprocity principle can be used to quickly determine optimal current injection patterns in TES and help to simplify TES protocols that are consistent with hardware and software availability and with safety constraints.

摘要

多电极经颅电刺激(TES)或经颅直流电刺激(tDCS)中的一个关键挑战是找到一种电流注入模式,该模式能在目标部位提供所需的电流密度,并在头部其他部位将其降至最低,这在数学上被建模为一个优化问题。使用最小二乘法(LS)或线性约束最小方差法(LCMV)进行这种优化通常计算成本很高,并且需要多个独立的电流源。基于脑电图(EEG)和TES中的互易原理,只要感兴趣的脑区的正向EEG问题的解可用,就有可能快速找到最优的TES模式。在这里,我们研究互易原理作为在TES中找到符合安全约束的最优电流注入模式的指导原则。我们在一个详细的七组织有限元头部模型中定义了四个不同的试验性皮质靶点,并以LS和LCMV解作为参考标准,从电极密度、靶向误差、聚焦性、强度和方向性方面分析了TES互易方法族的性能。结果发现,互易算法表现出与LCMV和LS解相当的良好性能。比较128电极和256电极的情况,我们发现使用更高的电极密度可以改善聚焦性、方向性和强度参数。结果表明,互易原理可用于快速确定TES中的最优电流注入模式,并有助于简化与硬件和软件可用性以及安全约束相一致的TES方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7bd/4882341/ea04bd118bfd/fpsyt-07-00087-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验