文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于进化算法的多目标优化用于人类大脑高清经颅电刺激(MOVEA)

Multi-objective optimization via evolutionary algorithm (MOVEA) for high-definition transcranial electrical stimulation of the human brain.

作者信息

Wang Mo, Lou Kexin, Liu Zeming, Wei Pengfei, Liu Quanying

机构信息

Department of Biomedical Engineering, Southern University of Science and Technology, China.

Department of Biomedical Engineering, Southern University of Science and Technology, China; School of Electrical Engineering and Computer Science, University of Queensland, Australia.

出版信息

Neuroimage. 2023 Oct 15;280:120331. doi: 10.1016/j.neuroimage.2023.120331. Epub 2023 Aug 19.


DOI:10.1016/j.neuroimage.2023.120331
PMID:37604295
Abstract

Designing a transcranial electrical stimulation (tES) strategy requires considering multiple objectives, such as intensity in the target area, focality, stimulation depth, and avoidance zone. These objectives are often mutually exclusive. In this paper, we propose a general framework, called multi-objective optimization via evolutionary algorithm (MOVEA), which solves the non-convex optimization problem in designing tES strategies without a predefined direction. MOVEA enables simultaneous optimization of multiple targets through Pareto optimization, generating a Pareto front after a single run without manual weight adjustment and allowing easy expansion to more targets. This Pareto front consists of optimal solutions that meet various requirements while respecting trade-off relationships between conflicting objectives such as intensity and focality. MOVEA is versatile and suitable for both transcranial alternating current stimulation (tACS) and transcranial temporal interference stimulation (tTIS) based on high definition (HD) and two-pair systems. We comprehensively compared tACS and tTIS in terms of intensity, focality, and steerability for targets at different depths. Our findings reveal that tTIS enhances focality by reducing activated volume outside the target by 60%. HD-tTIS and HD-tDCS can achieve equivalent maximum intensities, surpassing those of two-pair tTIS, such as 0.51 V/m under HD-tACS/HD-tTIS and 0.42 V/m under two-pair tTIS for the motor area as a target. Analysis of variance in eight subjects highlights individual differences in both optimal stimulation policies and outcomes for tACS and tTIS, emphasizing the need for personalized stimulation protocols. These findings provide guidance for designing appropriate stimulation strategies for tACS and tTIS. MOVEA facilitates the optimization of tES based on specific objectives and constraints, advancing tTIS and tACS-based neuromodulation in understanding the causal relationship between brain regions and cognitive functions and treating diseases. The code for MOVEA is available at https://github.com/ncclabsustech/MOVEA.

摘要

设计经颅电刺激(tES)策略需要考虑多个目标,例如目标区域的强度、聚焦性、刺激深度和避让区域。这些目标往往相互排斥。在本文中,我们提出了一个通用框架,称为通过进化算法进行多目标优化(MOVEA),它可以解决在设计tES策略时没有预定义方向的非凸优化问题。MOVEA通过帕累托优化实现多个目标的同时优化,单次运行后即可生成帕累托前沿,无需手动调整权重,并且可以轻松扩展到更多目标。这个帕累托前沿由满足各种要求的最优解组成,同时尊重强度和聚焦性等相互冲突目标之间的权衡关系。MOVEA具有通用性,适用于基于高清(HD)和双对系统的经颅交流电刺激(tACS)和经颅颞干扰刺激(tTIS)。我们在强度、聚焦性和不同深度目标的可操控性方面全面比较了tACS和tTIS。我们的研究结果表明,tTIS通过将目标区域外的激活体积减少60%来增强聚焦性。高清tTIS和高清tDCS可以实现等效的最大强度,超过双对tTIS,例如以运动区域为目标时,高清tACS/高清tTIS下为0.51 V/m,双对tTIS下为0.42 V/m。对八名受试者的方差分析突出了tACS和tTIS在最佳刺激策略和结果方面的个体差异,强调了个性化刺激方案的必要性。这些发现为设计适用于tACS和tTIS的刺激策略提供了指导。MOVEA有助于基于特定目标和约束条件对tES进行优化,推动基于tTIS和tACS的神经调节在理解脑区与认知功能之间的因果关系以及治疗疾病方面的发展。MOVEA的代码可在https://github.com/ncclabsustech/MOVEA获取。

相似文献

[1]
Multi-objective optimization via evolutionary algorithm (MOVEA) for high-definition transcranial electrical stimulation of the human brain.

Neuroimage. 2023-10-15

[2]
Prospects for transcranial temporal interference stimulation in humans: A computational study.

Neuroimage. 2019-8-29

[3]
A computational study on the optimization of transcranial temporal interfering stimulation with high-definition electrodes using unsupervised neural networks.

Hum Brain Mapp. 2023-4-1

[4]
Benchmarking the effects of transcranial temporal interference stimulation (tTIS) in humans.

Cortex. 2022-9

[5]
Neuromodulation effect of temporal interference stimulation based on network computational model.

Front Hum Neurosci. 2024-9-25

[6]
Lesion network guided delta frequency neuromodulation improves cognition in patients with psychosis spectrum disorders: A pilot study.

Asian J Psychiatr. 2024-2

[7]
Feasibility of Interferential and Pulsed Transcranial Electrical Stimulation for Neuromodulation at the Human Scale.

Neuromodulation. 2021-7

[8]
Transcranial temporal interference stimulation (tTIS) influences event-related alpha activity during mental rotation.

Psychophysiology. 2024-11

[9]
Interindividual variability of electric fields during transcranial temporal interference stimulation (tTIS).

Sci Rep. 2021-10-13

[10]
Multi-channel transcranial temporally interfering stimulation (tTIS): application to living mice brain.

J Neural Eng. 2021-3-8

引用本文的文献

[1]
Design of TI-TMS system for deep brain stimulation with higher focus in neural modulation.

Sci Rep. 2025-7-1

[2]
Transcranial temporal interference stimulation precisely targets deep brain regions to regulate eye movements.

Neurosci Bull. 2025-4-11

[3]
Syncing the brain's networks: dynamic functional connectivity shifts from temporal interference.

Front Hum Neurosci. 2024-10-29

[4]
[An efficient and practical electrode optimization method for transcranial electrical stimulation].

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024-8-25

[5]
Perspectives on Optimized Transcranial Electrical Stimulation Based on Spatial Electric Field Modeling in Humans.

J Clin Med. 2024-5-24

[6]
Population-level insights into temporal interference for focused deep brain neuromodulation.

Front Hum Neurosci. 2024-4-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索