Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
Nucleic Acids Res. 2021 Dec 16;49(22):13019-13030. doi: 10.1093/nar/gkab1160.
SARS-CoV-2 is a positive-sense RNA virus responsible for the Coronavirus Disease 2019 (COVID-19) pandemic, which continues to cause significant morbidity, mortality and economic strain. SARS-CoV-2 can cause severe respiratory disease and death in humans, highlighting the need for effective antiviral therapies. The RNA synthesis machinery of SARS-CoV-2 is an ideal drug target and consists of non-structural protein 12 (nsp12), which is directly responsible for RNA synthesis, and numerous co-factors involved in RNA proofreading and 5' capping of viral RNAs. The formation of the 5' 7-methylguanosine (m7G) cap structure is known to require a guanylyltransferase (GTase) as well as a 5' triphosphatase and methyltransferases; however, the mechanism of SARS-CoV-2 RNA capping remains poorly understood. Here we find that SARS-CoV-2 nsp12 is involved in viral RNA capping as a GTase, carrying out the addition of a GTP nucleotide to the 5' end of viral RNA via a 5' to 5' triphosphate linkage. We further show that the nsp12 NiRAN (nidovirus RdRp-associated nucleotidyltransferase) domain performs this reaction, and can be inhibited by remdesivir triphosphate, the active form of the antiviral drug remdesivir. These findings improve understanding of coronavirus RNA synthesis and highlight a new target for novel or repurposed antiviral drugs against SARS-CoV-2.
严重急性呼吸综合征冠状病毒 2 是一种正链 RNA 病毒,可引发 2019 年冠状病毒病(COVID-19)大流行,持续导致重大发病率、死亡率和经济压力。SARS-CoV-2 可导致人类发生严重呼吸道疾病和死亡,突出表明需要有效的抗病毒疗法。SARS-CoV-2 的 RNA 合成机制是一个理想的药物靶点,由直接负责 RNA 合成的非结构蛋白 12(nsp12)和众多涉及 RNA 校对和病毒 RNA 5'加帽的辅助因子组成。已知 5' 7-甲基鸟苷(m7G)帽结构的形成需要鸟苷转移酶(GTase)以及 5'三磷酸酶和甲基转移酶;然而,SARS-CoV-2 RNA 加帽的机制仍知之甚少。在这里,我们发现 SARS-CoV-2 nsp12 作为 GTase 参与病毒 RNA 加帽,通过 5' 至 5' 三磷酸键将 GTP 核苷酸添加到病毒 RNA 的 5' 端。我们进一步表明,nsp12 的 NiRAN(nidovirus RdRp 相关核苷酸转移酶)结构域执行此反应,并且可以被抗病毒药物瑞德西韦三磷酸盐(remdesivir triphosphate)抑制,remdesivir 三磷酸盐是瑞德西韦的活性形式。这些发现提高了对冠状病毒 RNA 合成的理解,并突出了针对 SARS-CoV-2 的新型或重新利用的抗病毒药物的新靶标。