Suppr超能文献

DAEMDA:一种基于双通道注意力编码的 miRNA-疾病关联预测方法。

DAEMDA: A Method with Dual-Channel Attention Encoding for miRNA-Disease Association Prediction.

机构信息

College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China.

出版信息

Biomolecules. 2023 Oct 12;13(10):1514. doi: 10.3390/biom13101514.

Abstract

A growing number of studies have shown that aberrant microRNA (miRNA) expression is closely associated with the evolution and development of various complex human diseases. These key biomarkers' identification and observation are significant for gaining a deeper understanding of disease pathogenesis and therapeutic mechanisms. Consequently, pinpointing potential miRNA-disease associations (MDA) has become a prominent bioinformatics subject, encouraging several new computational methods given the advances in graph neural networks (GNN). Nevertheless, these existing methods commonly fail to exploit the network nodes' global feature information, leaving the generation of high-quality embedding representations using graph properties as a critical unsolved issue. Addressing these challenges, we introduce the DAEMDA, a computational method designed to optimize the current models' efficacy. First, we construct similarity and heterogeneous networks involving miRNAs and diseases, relying on experimentally corroborated miRNA-disease association data and analogous information. Then, a newly-fashioned parallel dual-channel feature encoder, designed to better comprehend the global information within the heterogeneous network and generate varying embedding representations, follows this. Ultimately, employing a neural network classifier, we merge the dual-channel embedding representations and undertake association predictions between miRNA and disease nodes. The experimental results of five-fold cross-validation and case studies of major diseases based on the HMDD v3.2 database show that this method can generate high-quality embedded representations and effectively improve the accuracy of MDA prediction.

摘要

越来越多的研究表明,异常的 microRNA(miRNA)表达与各种复杂人类疾病的发生和发展密切相关。这些关键生物标志物的鉴定和观察对于深入了解疾病发病机制和治疗机制具有重要意义。因此,确定潜在的 miRNA-疾病关联(MDA)已成为一个突出的生物信息学课题,由于图神经网络(GNN)的进步,鼓励了几种新的计算方法。然而,这些现有的方法通常无法利用网络节点的全局特征信息,因此利用图属性生成高质量的嵌入表示仍然是一个关键的未解决问题。为了解决这些挑战,我们引入了 DAEMDA,这是一种旨在优化现有模型功效的计算方法。首先,我们构建了涉及 miRNA 和疾病的相似性和异构网络,这些网络依赖于经过实验证实的 miRNA-疾病关联数据和类似信息。然后,采用一种新颖的并行双通道特征编码器,旨在更好地理解异构网络中的全局信息并生成不同的嵌入表示。最后,我们使用神经网络分类器融合双通道嵌入表示,并对 miRNA 和疾病节点之间的关联进行预测。基于 HMDD v3.2 数据库的五重交叉验证实验结果和主要疾病案例研究表明,该方法可以生成高质量的嵌入表示,并有效提高 MDA 预测的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87eb/10604960/b793aa58869d/biomolecules-13-01514-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验