Suppr超能文献

AMFCL:通过自适应多源模态融合和对比学习预测微小RNA与疾病的关联

AMFCL: Predicting miRNA-Disease Associations Through Adaptive Multi-source Modality Fusion and Contrastive Learning.

作者信息

Yang Yanfang, Wang Shuang, Kang Wenyue, Jiao Cuina, Gao Yinglian, Liu Jinxing

机构信息

The School of Computer Science, Qufu Normal University, Rizhao, 276826, China.

Qufu Normal University Library, Qufu Normal University, Rizhao, 276826, China.

出版信息

Interdiscip Sci. 2025 Jun 2. doi: 10.1007/s12539-025-00724-4.

Abstract

Dysregulation of microRNAs (miRNAs) is a cause of progression in numerous diseases. Uncovering miRNA-disease associations (MDAs) is essential for discovering new biomarkers. Nonetheless, in contrast to conventional biological approaches, advanced computational approaches are typically more rapid and cost-effective. However, most computational methods still face several challenges: (i) integrating multi-source information (MSI); (ii) optimizing feature fusion; (iii) mitigating over-smoothing in graph-based models. This paper introduces a novel model, AMFCL. To encapsulate the miRNA-disease relationships, three types of networks are first constructed. After that, the node representations are learned via multi-layer graph sample and aggregate (GraphSAGE). An adaptive fusion mechanism (AFM) dynamically assigns weights to feature representations to optimize the fusion process. Additionally, a residual connection is used to combat the over-smoothing effect that occurs in graph-based models. The robustness of miRNA and disease embeddings is improved by contrastive learning (CL). Lastly, a multi-layer perceptron (MLP) has all feature embeddings fed into it for the computation of MDA scores. The corresponding experimental results show remarkable improvements in AMFCL compared to advanced models. Moreover, relevant case studies systematically validate the approach's effectiveness in identifying unknown MDAs.

摘要

微小RNA(miRNA)的失调是许多疾病进展的一个原因。揭示miRNA与疾病的关联(MDA)对于发现新的生物标志物至关重要。尽管如此,与传统生物学方法相比,先进的计算方法通常更快且更具成本效益。然而,大多数计算方法仍然面临几个挑战:(i)整合多源信息(MSI);(ii)优化特征融合;(iii)减轻基于图的模型中的过平滑问题。本文介绍了一种新颖的模型,即AMFCL。为了封装miRNA与疾病的关系,首先构建三种类型的网络。之后,通过多层图采样和聚合(GraphSAGE)学习节点表示。一种自适应融合机制(AFM)动态地为特征表示分配权重以优化融合过程。此外,使用残差连接来对抗基于图的模型中出现的过平滑效应。通过对比学习(CL)提高miRNA和疾病嵌入的鲁棒性。最后,将所有特征嵌入输入到一个多层感知器(MLP)中以计算MDA分数。相应的实验结果表明,与先进模型相比,AMFCL有显著改进。此外,相关案例研究系统地验证了该方法在识别未知MDA方面的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验