Institute of Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy.
Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy.
Int J Mol Sci. 2023 Oct 11;24(20):15089. doi: 10.3390/ijms242015089.
Brugada Syndrome (BrS) is a rare inherited cardiac arrhythmia causing potentially fatal ventricular tachycardia or fibrillation, mainly occurring during rest or sleep in young individuals without heart structural issues. It increases the risk of sudden cardiac death, and its characteristic feature is an abnormal ST segment elevation on the ECG. While BrS has diverse genetic origins, a subset of cases can be conducted to mutations in the gene, which encodes for the Nav1.5 sodium channel. Our study focused on three novel mutations (p.A344S, p.N347K, and p.D349N) found in unrelated BrS families. Using patch clamp experiments, we found that these mutations disrupted sodium currents: p.A344S reduced current density, while p.N347K and p.D349N completely abolished it, leading to altered voltage dependence and inactivation kinetics when co-expressed with normal channels. We also explored the effects of mexiletine treatment, which can modulate ion channel function. Interestingly, the p.N347K and p.D349N mutations responded well to the treatment, rescuing the current density, while p.A344S showed a limited response. Structural analysis revealed these mutations were positioned in key regions of the channel, impacting its stability and function. This research deepens our understanding of BrS by uncovering the complex relationship between genetic mutations, ion channel behavior, and potential therapeutic interventions.
Brugada 综合征(BrS)是一种罕见的遗传性心律失常,可导致潜在致命性的室性心动过速或颤动,主要发生在无心脏结构问题的年轻个体休息或睡眠期间。它增加了心源性猝死的风险,其特征是心电图上异常的 ST 段抬高。虽然 BrS 有多种遗传起源,但一部分病例可以归因于 基因的突变,该基因编码 Nav1.5 钠通道。我们的研究集中在三个在无关的 BrS 家族中发现的新 突变(p.A344S、p.N347K 和 p.D349N)。通过膜片钳实验,我们发现这些突变破坏了钠电流:p.A344S 降低了电流密度,而 p.N347K 和 p.D349N 则完全使其丧失,导致与正常通道共表达时改变电压依赖性和失活动力学。我们还探讨了 mexiletine 治疗的效果,它可以调节离子通道功能。有趣的是,p.N347K 和 p.D349N 突变对治疗反应良好,恢复了电流密度,而 p.A344S 则反应有限。结构分析表明这些突变位于通道的关键区域,影响其稳定性和功能。这项研究通过揭示基因突变、离子通道行为和潜在治疗干预之间的复杂关系,加深了我们对 BrS 的理解。