文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Stabilization of Graphene Oxide Dispersion in Plasma-like Isotonic Solution Containing Aggregating Concentrations of Bivalent Cations.

作者信息

Krasoń Marcin Z, Paradowska Anna, Fronczek Martyna, Lejawa Mateusz, Kamieńska Natalia, Krejca Michał, Kolanowska Anna, Boncel Sławomir, Radomski Marek W

机构信息

Silesian Park of Medical Technology Kardio-Med Silesia, 41-800 Zabrze, Poland.

Cardiac Surgery Department, Medical University of Łódź, 90-419 Łódź, Poland.

出版信息

Pharmaceutics. 2023 Oct 19;15(10):2495. doi: 10.3390/pharmaceutics15102495.


DOI:10.3390/pharmaceutics15102495
PMID:37896255
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10610486/
Abstract

UNLABELLED: Graphene oxide's (GO) intravascular applications and biocompatibility are not fully explored yet, although it has been proposed as an anticancer drug transporter, antibacterial factor or component of wearable devices. Bivalent cations and the number of particles' atom layers, as well as their structural oxygen content and pH of the dispersion, all affect the GO size, shape, dispersibility and biological effects. Bovine serum albumin (BSA), an important blood plasma protein, is expected to improve GO dispersion stability in physiological concentrations of the precipitating calcium and magnesium cations to enable effective and safe tissue perfusion. METHODS: Four types of GO commercially available aqueous dispersions (with different particle structures) were diluted, sonicated and studied in the presence of BSA and physiological cation concentrations. Nanoparticle populations sizes, electrical conductivity, zeta potential (Zetasizer NanoZS), structure (TEM and CryoTEM), functional groups content (micro titration) and dispersion pH were analyzed in consecutive preparation stages. RESULTS: BSA effectively prevented the aggregation of GO in precipitating concentrations of physiological bivalent cations. The final polydispersity indexes were reduced from 0.66-0.91 to 0.36-0.43. The GO-containing isotonic dispersions were stable with the following Z-ave results: GO1 421.1 nm, GO2 382.6 nm, GO3 440.2 nm and GO4 490.1 nm. The GO behavior was structure-dependent. CONCLUSION: BSA effectively stabilized four types of GO dispersions in an isotonic dispersion containing aggregating bivalent physiological cations.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/5aa2d1af8716/pharmaceutics-15-02495-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/f930affb2e96/pharmaceutics-15-02495-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/039fc9a42e1f/pharmaceutics-15-02495-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/3b8864a5bbcc/pharmaceutics-15-02495-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/1bb7f9942b25/pharmaceutics-15-02495-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/f646dc904795/pharmaceutics-15-02495-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/924dc3fd9944/pharmaceutics-15-02495-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/165bcabb63f7/pharmaceutics-15-02495-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/e0e03e5ba9ef/pharmaceutics-15-02495-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/340b11a48512/pharmaceutics-15-02495-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/79252465278d/pharmaceutics-15-02495-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/9a690466f608/pharmaceutics-15-02495-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/829b8f774993/pharmaceutics-15-02495-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/0877a3e59c94/pharmaceutics-15-02495-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/6b7689bec84d/pharmaceutics-15-02495-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/d001b9235d65/pharmaceutics-15-02495-g015a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/275f150c085d/pharmaceutics-15-02495-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/5aa2d1af8716/pharmaceutics-15-02495-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/f930affb2e96/pharmaceutics-15-02495-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/039fc9a42e1f/pharmaceutics-15-02495-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/3b8864a5bbcc/pharmaceutics-15-02495-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/1bb7f9942b25/pharmaceutics-15-02495-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/f646dc904795/pharmaceutics-15-02495-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/924dc3fd9944/pharmaceutics-15-02495-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/165bcabb63f7/pharmaceutics-15-02495-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/e0e03e5ba9ef/pharmaceutics-15-02495-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/340b11a48512/pharmaceutics-15-02495-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/79252465278d/pharmaceutics-15-02495-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/9a690466f608/pharmaceutics-15-02495-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/829b8f774993/pharmaceutics-15-02495-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/0877a3e59c94/pharmaceutics-15-02495-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/6b7689bec84d/pharmaceutics-15-02495-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/d001b9235d65/pharmaceutics-15-02495-g015a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/275f150c085d/pharmaceutics-15-02495-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d396/10610486/5aa2d1af8716/pharmaceutics-15-02495-g017.jpg

相似文献

[1]
Stabilization of Graphene Oxide Dispersion in Plasma-like Isotonic Solution Containing Aggregating Concentrations of Bivalent Cations.

Pharmaceutics. 2023-10-19

[2]
Graphene Oxide Significantly Modifies Cardiac Parameters and Coronary Endothelial Reactivity in Healthy and Hypertensive Rat Hearts .

ACS Omega. 2024-6-18

[3]
Influence of Multidimensional Graphene Oxide (GO) Sheets on Anti-Biofouling and Desalination Performance of Thin-Film Composite Membranes: Effects of GO Lateral Sizes and Oxidation Degree.

Polymers (Basel). 2020-11-30

[4]
The dispersion and aggregation of graphene oxide in aqueous media.

Nanoscale. 2016-7-19

[5]
Graphene Oxide "Surfactant"-Directed Tunable Concentration of Graphene Dispersion.

Small. 2020-11

[6]
Folic acid-grafted bovine serum albumin decorated graphene oxide: An efficient drug carrier for targeted cancer therapy.

J Colloid Interface Sci. 2017-3-15

[7]
New insights into the colloidal stability of graphene oxide in aquatic environment: Interplays of photoaging and proteins.

Water Res. 2021-7-15

[8]
Graphene oxide stabilized by PLA-PEG copolymers for the controlled delivery of paclitaxel.

Eur J Pharm Biopharm. 2015-6

[9]
Concentration Dependent Effects of Bovine Serum Albumin on Graphene Oxide Colloidal Stability in Aquatic Environment.

Environ Sci Technol. 2018-6-22

[10]
Aqueous aggregation and stability of graphene nanoplatelets, graphene oxide, and reduced graphene oxide in simulated natural environmental conditions: complex roles of surface and solution chemistry.

Environ Sci Pollut Res Int. 2018-2-4

引用本文的文献

[1]
Graphene Oxide Significantly Modifies Cardiac Parameters and Coronary Endothelial Reactivity in Healthy and Hypertensive Rat Hearts .

ACS Omega. 2024-6-18

本文引用的文献

[1]
Synthesis, characterization, and evaluation of pH-sensitive doxorubicin-loaded functionalized graphene oxide in osteosarcoma cells.

Bioimpacts. 2023

[2]
Insights into the Stability of Graphene Oxide Aqueous Dispersions.

Nanomaterials (Basel). 2022-12-19

[3]
Principles governing control of aggregation and dispersion of aqueous graphene oxide.

Sci Rep. 2021-11-17

[4]
Functionalized Graphene Platforms for Anticancer Drug Delivery.

Int J Nanomedicine. 2021

[5]
Combination of graphene oxide and platelet-rich plasma improves tendon-bone healing in a rabbit model of supraspinatus tendon reconstruction.

Regen Biomater. 2021-8-4

[6]
Advances on Graphene-Based Nanomaterials and Mesenchymal Stem Cell-Derived Exosomes Applied in Cutaneous Wound Healing.

Int J Nanomedicine. 2021

[7]
Functionalized Graphene Oxide for Chemotherapeutic Drug Delivery and Cancer Treatment: A Promising Material in Nanomedicine.

Int J Mol Sci. 2020-8-30

[8]
The True Amphipathic Nature of Graphene Flakes: A Versatile 2D Stabilizer.

Adv Mater. 2020-8

[9]
Alendronate loaded graphene oxide functionalized collagen sponge for the dual effects of osteogenesis and anti-osteoclastogenesis in osteoporotic rats.

Bioact Mater. 2020-6-25

[10]
Personalized Graphene Oxide-Protein Corona in the Human Plasma of Pancreatic Cancer Patients.

Front Bioeng Biotechnol. 2020-5-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索