Krasoń Marcin Z, Paradowska Anna, Boncel Sławomir, Lejawa Mateusz, Fronczek Martyna, Śliwka Joanna, Nożyński Jerzy, Bogus Piotr, Hrapkowicz Tomasz, Czamara Krzysztof, Kaczor Agnieszka, Radomski Marek W
Silesian Park of Medical Technology Kardio-Med Silesia, Marii Skłodowskiej-Curie 10C, 41-800 Zabrze, Poland.
Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Silesian Center for Heart Disease, Medical University of Silesia in Katowice, Marii Skłodowskiej-Curie 9, 41-800 Zabrze, Poland.
ACS Omega. 2024 Jun 18;9(26):28397-28411. doi: 10.1021/acsomega.4c02291. eCollection 2024 Jul 2.
Interactions of graphene oxide (GO) with an rat heart and its coronary vessels have not been studied yet. Moreover, the conflicting data on the "structure-properties" relationships do not allow for biomedical applications of GO. Herein, we study the impact of GO on the isolated rat heart, normotensive and hypertensive, under the working heart and the constant-pressure perfusion (Langendorff) regimes. Four structural GO variants of the following initial morphology were used: few-layer (below 10-layer) GO1, O < 49%; predominantly single-layer GO2, O = 41-50%; 15-20-layer GO3, O < 11%; and few-layer (below 10-layer) NH -functionalized GO4, O < 44%, N = 3-6%. The aqueous GO dispersions, sonicated and stabilized with bovine serum albumin in Krebs-Henseleit-like solution-uniformized in terms of the particle size-were eventually size-monodisperse as revealed by dynamic light scattering. To study the cardiotoxicity mechanisms of GO, histopathology, Raman spectroscopy, analysis of cardiac parameters (coronary and aortic flows, heart rate, aortic pressure), and nitric oxide (NO-)-dependent coronary flow response to bradykinin (blood-vessel-vasodilator) were used. GO1 (10 mg/L) exerted no effects on cardiac function and preserved an increase in coronary flow in response to bradykinin. GO2 (10 mg/L) reduced coronary flow, aortic pressure in normotensive hearts, and coronary flow in hypertensive hearts, and intensified the response to bradykinin in normal hearts. GO3 (10 mg/L) reduced all parameters in hypertensive hearts and coronary response to bradykinin in normal hearts. At higher concentrations (normotensive hearts, 30 mg/L), the coronary response to bradykinin was blocked. GO4 (10 mg/L) reduced the coronary flow in normal hearts, while for hypertensive hearts, all parameters, except the coronary flow, were reduced and the coronary response to bradykinin was blocked. The results showed that a low number of GO layers and high O-content were safer for normal and hypertensive rat hearts. Hypertensive hearts deteriorated easier upon perfusion with low-O-content GOs. Our findings support the necessity of strict control over the GO structure during organ perfusion and indicate the urgent need for personalized medicine in biomedical applications of GO.
氧化石墨烯(GO)与大鼠心脏及其冠状血管的相互作用尚未得到研究。此外,关于“结构 - 性质”关系的相互矛盾的数据使得GO无法应用于生物医学领域。在此,我们研究了在工作心脏和恒压灌注(Langendorff)模式下,GO对正常血压和高血压大鼠离体心脏的影响。使用了具有以下初始形态的四种结构GO变体:少层(低于10层)GO1,氧含量(O)<49%;主要为单层的GO2,O = 41 - 50%;15 - 20层的GO3,O < 11%;以及少层(低于10层)的NH官能化GO4,O < 44%,氮含量(N)= 3 - 6%。通过动态光散射显示,在类似Krebs - Henseleit溶液中用牛血清白蛋白超声处理并稳定化的GO水性分散体,在粒度方面最终是单分散的。为了研究GO的心脏毒性机制,采用了组织病理学、拉曼光谱、心脏参数分析(冠状动脉和主动脉流量、心率、主动脉压力)以及一氧化氮(NO - )依赖性冠状动脉对缓激肽(血管扩张剂)的流量反应。GO1(10 mg/L)对心脏功能无影响,并保留了对缓激肽的冠状动脉流量增加反应。GO2(10 mg/L)降低了正常血压心脏的冠状动脉流量、主动脉压力以及高血压心脏的冠状动脉流量,并增强了正常心脏对缓激肽的反应。GO3(10 mg/L)降低了高血压心脏的所有参数以及正常心脏对缓激肽的冠状动脉反应。在较高浓度(正常血压心脏,30 mg/L)下,对缓激肽的冠状动脉反应被阻断。GO4(10 mg/L)降低了正常心脏的冠状动脉流量,而对于高血压心脏,除冠状动脉流量外的所有参数均降低,并且对缓激肽的冠状动脉反应被阻断。结果表明,较少的GO层数和较高的氧含量对正常和高血压大鼠心脏更安全。低氧含量的GO灌注更容易使高血压心脏恶化。我们的研究结果支持在器官灌注过程中严格控制GO结构的必要性,并表明在GO的生物医学应用中迫切需要个性化医疗。