Suppr超能文献

使用H2O自动机器学习技术自动预测裂纹扩展

Automated Prediction of Crack Propagation Using H2O AutoML.

作者信息

Omar Intisar, Khan Muhammad, Starr Andrew, Abou Rok Ba Khaled

机构信息

School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK.

出版信息

Sensors (Basel). 2023 Oct 12;23(20):8419. doi: 10.3390/s23208419.

Abstract

Crack propagation is a critical phenomenon in materials science and engineering, significantly impacting structural integrity, reliability, and safety across various applications. The accurate prediction of crack propagation behavior is paramount for ensuring the performance and durability of engineering components, as extensively explored in prior research. Nevertheless, there is a pressing demand for automated models capable of efficiently and precisely forecasting crack propagation. In this study, we address this need by developing a machine learning-based automated model using the powerful H2O library. This model aims to accurately predict crack propagation behavior in various materials by analyzing intricate crack patterns and delivering reliable predictions. To achieve this, we employed a comprehensive dataset derived from measured instances of crack propagation in Acrylonitrile Butadiene Styrene (ABS) specimens. Rigorous evaluation metrics, including Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R-squared (R) values, were applied to assess the model's predictive accuracy. Cross-validation techniques were utilized to ensure its robustness and generalizability across diverse datasets. Our results underscore the automated model's remarkable accuracy and reliability in predicting crack propagation. This study not only highlights the immense potential of the H2O library as a valuable tool for structural health monitoring but also advocates for the broader adoption of Automated Machine Learning (AutoML) solutions in engineering applications. In addition to presenting these findings, we define H2O as a powerful machine learning library and AutoML as Automated Machine Learning to ensure clarity and understanding for readers unfamiliar with these terms. This research not only demonstrates the significance of AutoML in future-proofing our approach to structural integrity and safety but also emphasizes the need for comprehensive reporting and understanding in scientific discourse.

摘要

裂纹扩展是材料科学与工程中的一个关键现象,对各种应用中的结构完整性、可靠性和安全性有着重大影响。如先前研究所广泛探讨的,准确预测裂纹扩展行为对于确保工程部件的性能和耐久性至关重要。然而,迫切需要能够高效且精确预测裂纹扩展的自动化模型。在本研究中,我们通过使用强大的H2O库开发基于机器学习的自动化模型来满足这一需求。该模型旨在通过分析复杂的裂纹模式并提供可靠预测,准确预测各种材料中的裂纹扩展行为。为实现这一目标,我们采用了一个综合数据集,该数据集源自丙烯腈-丁二烯-苯乙烯(ABS)试样中裂纹扩展的实测实例。应用包括平均绝对误差(MAE)、均方根误差(RMSE)和决定系数(R)值在内的严格评估指标来评估模型的预测准确性。利用交叉验证技术来确保其在不同数据集上的稳健性和通用性。我们的结果强调了该自动化模型在预测裂纹扩展方面的卓越准确性和可靠性。本研究不仅突出了H2O库作为结构健康监测的宝贵工具的巨大潜力,还倡导在工程应用中更广泛地采用自动化机器学习(AutoML)解决方案。除了展示这些发现外,我们将H2O定义为一个强大的机器学习库,将AutoML定义为自动化机器学习,以确保不熟悉这些术语的读者能够清晰理解。这项研究不仅证明了AutoML在确保我们对结构完整性和安全性的方法具有前瞻性方面的重要性,还强调了在科学论述中进行全面报告和理解的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a85/10611134/5495443cfffd/sensors-23-08419-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验