Suppr超能文献

基于超分辨率技术扩展视觉传感器测量距离以进行动态响应测量的可行性研究

A Feasibility Study on Extension of Measurement Distance in Vision Sensor Using Super-Resolution for Dynamic Response Measurement.

作者信息

Cho Dooyong, Gong Junho

机构信息

Department of Convergence System Engineering, Chungnam National University, Daejeon 34134, Republic of Korea.

Department of Future & Smart Construction Research, Korea Institute of Civil Engineering and Building Technology, Goyang-si 10223, Republic of Korea.

出版信息

Sensors (Basel). 2023 Oct 16;23(20):8496. doi: 10.3390/s23208496.

Abstract

The current civil infrastructure conditions can be assessed through the measurement of displacement using conventional contact-type sensors. To address the disadvantages of traditional sensors, vision-based sensor measurement systems have been derived in numerous studies and proven as an alternative to traditional sensors. Despite the benefits of the vision sensor, it is well known that the accuracy of the vision-based displacement measurement is largely dependent on the camera extrinsic or intrinsic parameters. In this study, the feasibility study of a deep learning-based single image super-resolution (SISR) technique in a vision-based sensor system is conducted to alleviate the low spatial resolution of image frames at long measurement distance ranges. Additionally, its robustness is evaluated using shaking table tests. As a result, it is confirmed that the SISR can reconstruct definite images of natural targets resulting in an extension of the measurement distance range. Additionally, it is determined that the SISR mitigates displacement measurement error in the vision sensor-based measurement system. Based on this fundamental study of SISR in the feature point-based measurement system, further analysis such as modal analysis, damage detection, and so forth should be continued in order to explore the functionality of SR images by applying low-resolution displacement measurement footage.

摘要

当前的民用基础设施状况可以通过使用传统接触式传感器测量位移来评估。为了解决传统传感器的缺点,许多研究中都衍生出了基于视觉的传感器测量系统,并被证明是传统传感器的一种替代方案。尽管视觉传感器有诸多优点,但众所周知,基于视觉的位移测量精度在很大程度上取决于相机的外部或内部参数。在本研究中,开展了基于深度学习的单图像超分辨率(SISR)技术在基于视觉的传感器系统中的可行性研究,以缓解在长测量距离范围内图像帧空间分辨率较低的问题。此外,使用振动台试验评估了其鲁棒性。结果表明,SISR可以重建自然目标的清晰图像,从而扩大测量距离范围。此外,还确定SISR减轻了基于视觉传感器的测量系统中的位移测量误差。基于在基于特征点的测量系统中对SISR的这项基础研究,应继续进行模态分析、损伤检测等进一步分析,以便通过应用低分辨率位移测量影像来探索超分辨率(SR)图像的功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dada/10611130/94c2d73631a2/sensors-23-08496-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验