Suppr超能文献

系统性红斑狼疮患儿霉酚酸的有限采样策略及群体药代动力学模型:采用SAEM算法的双伽马吸收模型的应用

Limited sampling strategy and population pharmacokinetic model of mycophenolic acid in pediatric patients with systemic lupus erythematosus: application of a double gamma absorption model with SAEM algorithm.

作者信息

Koloskoff Kévin, Benito Sylvain, Chambon Lucie, Dayan Frédéric, Marquet Pierre, Jacqz-Aigrain Evelyne, Woillard Jean-Baptiste

机构信息

INSERM, University of Limoges, CHU Limoges, P&T, U1248, Limoges, France.

EXACTCURE, Nice, France.

出版信息

Eur J Clin Pharmacol. 2024 Jan;80(1):83-92. doi: 10.1007/s00228-023-03587-0. Epub 2023 Oct 28.

Abstract

INTRODUCTION

Mycophenolic acid (MPA), the active metabolite of mycophenolate mofetil (MMF), is widely used in the treatment of systemic lupus erythematosus (SLE). It has been shown that its therapeutic drug monitoring based on the area under the curve (AUC) improves treatment efficacy. MPA exhibits a complex bimodal absorption, and a double gamma distribution model has been already proposed in the past to accurately describe this phenomenon. These previous population pharmacokinetics models (POPPK) have been developed using iterative two stage Bayesian (IT2B) or non-parametric adaptive grid (NPAG) methods. However, non-linear mixed effect (NLME) approaches based on stochastic approximation expectation-maximization (SAEM) algorithms have never been published so far for this particular model. The objectives of this study were (i) to implement the double absorption gamma model in Monolix, (ii) to compare different absorption models to describe the pharmacokinetics of MMF, and (iii) to develop a limited sampling strategy (LSS) to estimate AUC in pediatric SLE patients.

MATERIAL AND METHODS

A data splitting of full pharmacokinetic profiles sampled in 67 children extracted either from the expert system ISBA (n = 34) or the hospital Saint Louis (n = 33) was performed into train (75%) and test (25%) sets. A POPPK was developed for MPA in the train set using a NLME and the SAEM algorithm and different absorption models were implemented and compared (first order, transit, or simple and double gamma). The best limited sampling strategy was then determined in the test set using a maximum-a-posteriori Bayesian method to estimate individual PK parameters and AUC based on three blood samples compared to the reference AUC calculated using the trapezoidal rule applied on all samples and performances were assessed in the test set.

RESULTS

Mean patient age and dose was 13 years old (5-18) and 18.1 mg/kg (7.9-47.6), respectively. MPA concentrations (764) from 107 occasions were included in the analysis. A double gamma absorption with a first-order elimination from the central compartment best fitted the data. The optimal LSS with samples at 30 min, 2 h, and 3 h post-dose exhibited good performances in the test set (mean bias - 0.32% and RMSE 21.0%).

CONCLUSION

The POPPK developed in this study adequately estimated the MPA AUC in pediatric patients with SLE based on three samples. The double absorption gamma model developed with the SAEM algorithm showed very accurate fit and reduced computation time.

摘要

引言

霉酚酸(MPA)是霉酚酸酯(MMF)的活性代谢产物,广泛用于治疗系统性红斑狼疮(SLE)。研究表明,基于曲线下面积(AUC)的治疗药物监测可提高治疗效果。MPA呈现复杂的双峰吸收,过去已提出双伽马分布模型来准确描述这一现象。这些先前的群体药代动力学模型(POPPK)是使用迭代两阶段贝叶斯(IT2B)或非参数自适应网格(NPAG)方法开发的。然而,迄今为止,基于随机近似期望最大化(SAEM)算法的非线性混合效应(NLME)方法尚未针对该特定模型发表。本研究的目的是:(i)在Monolix中实现双吸收伽马模型;(ii)比较不同的吸收模型以描述MMF的药代动力学;(iii)制定有限采样策略(LSS)以估计儿科SLE患者的AUC。

材料与方法

从专家系统ISBA(n = 34)或圣路易斯医院(n = 33)提取的67名儿童的完整药代动力学曲线数据被分为训练集(75%)和测试集(25%)。在训练集中使用NLME和SAEM算法为MPA建立POPPK,并实施和比较不同的吸收模型(一级、转运或简单和双伽马模型)。然后在测试集中使用最大后验贝叶斯方法确定最佳有限采样策略,以基于三个血样估计个体药代动力学参数和AUC,并与使用梯形法则应用于所有样本计算的参考AUC进行比较,并在测试集中评估性能。

结果

患者的平均年龄和剂量分别为13岁(5 - 18岁)和18.1mg/kg(7.9 - 47.6mg/kg)。分析纳入了107个时间点的MPA浓度(764个)。具有从中央室一级消除的双伽马吸收最能拟合数据。给药后30分钟、2小时和3小时采样的最佳LSS在测试集中表现良好(平均偏差 - 0.32%,均方根误差21.0%)。

结论

本研究开发的POPPK基于三个样本充分估计了儿科SLE患者的MPA AUC。使用SAEM算法开发的双吸收伽马模型显示出非常准确的拟合,并减少了计算时间

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验