Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Centre for Statistics in Medicine, University of Oxford, Oxford, United Kingdom.
Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Centre for Statistics in Medicine, University of Oxford, Oxford, United Kingdom.
J Clin Epidemiol. 2024 Jan;165:111199. doi: 10.1016/j.jclinepi.2023.10.015. Epub 2023 Oct 28.
To describe the frequency of open science practices in a contemporary sample of studies developing prognostic models using machine learning methods in the field of oncology.
We conducted a systematic review, searching the MEDLINE database between December 1, 2022, and December 31, 2022, for studies developing a multivariable prognostic model using machine learning methods (as defined by the authors) in oncology. Two authors independently screened records and extracted open science practices.
We identified 46 publications describing the development of a multivariable prognostic model. The adoption of open science principles was poor. Only one study reported availability of a study protocol, and only one study was registered. Funding statements and conflicts of interest statements were common. Thirty-five studies (76%) provided data sharing statements, with 21 (46%) indicating data were available on request to the authors and seven declaring data sharing was not applicable. Two studies (4%) shared data. Only 12 studies (26%) provided code sharing statements, including 2 (4%) that indicated the code was available on request to the authors. Only 11 studies (24%) provided sufficient information to allow their model to be used in practice. The use of reporting guidelines was rare: eight studies (18%) mentioning using a reporting guideline, with 4 (10%) using the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis Or Diagnosis statement, 1 (2%) using Minimum Information About Clinical Artificial Intelligence Modeling and Consolidated Standards Of Reporting Trials-Artificial Intelligence, 1 (2%) using Strengthening The Reporting Of Observational Studies In Epidemiology, 1 (2%) using Standards for Reporting Diagnostic Accuracy Studies, and 1 (2%) using Transparent Reporting of Evaluations with Nonrandomized Designs.
The adoption of open science principles in oncology studies developing prognostic models using machine learning methods is poor. Guidance and an increased awareness of benefits and best practices of open science are needed for prediction research in oncology.
描述在使用机器学习方法开发肿瘤学预后模型的当代研究样本中,开放科学实践的频率。
我们进行了一项系统评价,在 2022 年 12 月 1 日至 12 月 31 日期间,在 MEDLINE 数据库中搜索使用机器学习方法(由作者定义)开发多变量预后模型的研究。两位作者独立筛选记录并提取开放科学实践。
我们确定了 46 篇描述多变量预后模型开发的文献。采用开放科学原则的情况很差。只有一项研究报告了研究方案的可用性,只有一项研究进行了注册。资金声明和利益冲突声明很常见。35 项研究(76%)提供了数据共享声明,其中 21 项(46%)表明数据可根据作者的要求提供,7 项声明数据不适用。两项研究(4%)共享了数据。只有 12 项研究(26%)提供了代码共享声明,包括 2 项(4%)表明代码可根据作者的要求提供。只有 11 项研究(24%)提供了足够的信息,使其模型可在实践中使用。报告指南的使用很少见:8 项研究(18%)提到使用报告指南,其中 4 项(10%)使用了多变量个体预后或诊断预测模型透明报告声明,1 项(2%)使用了临床试验人工智能最小信息报告标准,1 项(2%)使用了观察性研究的加强报告标准,1 项(2%)使用了诊断准确性研究报告标准,1 项(2%)使用了非随机设计评估的透明报告标准。
在使用机器学习方法开发肿瘤学预后模型的研究中,开放科学原则的采用情况很差。需要为肿瘤学预测研究提供指导,并提高对开放科学的益处和最佳实践的认识。