Wang Gaopeng, Liu Xingwang, Gan Su-Sheng
Present Address: Shanghai Institute of Technology, Shanghai, 201418, China.
Present Address: Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China.
Mol Hortic. 2023 Oct 30;3(1):22. doi: 10.1186/s43897-023-00072-1.
We previously reported that ABA inhibits stomatal closure through AtNAP-SAG113 PP2C regulatory module during leaf senescence. The mechanism by which this module exerts its function is unknown. Here we report the identification and functional analysis of SAG114, a direct target of the regulatory module. SAG114 encodes SnRK3.25. Both bimolecular fluorescence complementation (BiFC) and yeast two-hybrid assays show that SAG113 PP2C physically interacts with SAG114 SnRK3.25. Biochemically the SAG113 PP2C dephosphorylates SAG114 in vitro and in planta. RT-PCR and GUS reporter analyses show that SAG114 is specifically expressed in senescing leaves in Arabidopsis. Functionally, the SAG114 knockout mutant plants have a significantly bigger stomatal aperture and a much faster water loss rate in senescing leaves than those of wild type, and display a precocious senescence phenotype. The premature senescence phenotype of sag114 is epistatic to sag113 (that exhibits a remarkable delay in leaf senescence) because the sag113 sag114 double mutant plants show an early leaf senescence phenotype, similar to that of sag114. These results not only demonstrate that the ABA-AtNAP-SAG113 PP2C regulatory module controls leaf longevity by dephosphorylating SAG114 kinase, but also reveal the involvement of the SnRK3 family gene in stomatal movement and water loss during leaf senescence.
我们之前报道过,在叶片衰老过程中,脱落酸(ABA)通过AtNAP-SAG113蛋白磷酸酶2C(PP2C)调控模块抑制气孔关闭。该模块发挥功能的机制尚不清楚。在此,我们报道了该调控模块的直接靶点SAG114的鉴定及功能分析。SAG114编码SnRK3.25。双分子荧光互补(BiFC)和酵母双杂交试验均表明,SAG113 PP2C与SAG114 SnRK3.25发生物理相互作用。生化分析表明,SAG113 PP2C在体外和植物体内均可使SAG114去磷酸化。逆转录聚合酶链反应(RT-PCR)和β-葡萄糖醛酸酶(GUS)报告基因分析表明,SAG114在拟南芥衰老叶片中特异性表达。在功能上,与野生型相比,SAG114基因敲除突变体植株衰老叶片的气孔孔径明显更大,失水速率更快,并表现出早衰表型。sag114的早衰表型相对于sag113(其叶片衰老显著延迟)是上位性的,因为sag113 sag114双突变体植株表现出与sag114相似的早期叶片衰老表型。这些结果不仅证明了ABA-AtNAP-SAG113 PP2C调控模块通过使SAG114激酶去磷酸化来控制叶片寿命,还揭示了SnRK3家族基因参与叶片衰老过程中的气孔运动和水分流失。