Suppr超能文献

用于高效聚光太阳能驱动光热CO还原的N掺杂碳催化剂中的非相互作用Ni和Fe双原子对位点

Non-Interacting Ni and Fe Dual-Atom Pair Sites in N-Doped Carbon Catalysts for Efficient Concentrating Solar-Driven Photothermal CO Reduction.

作者信息

Mo Shengpeng, Zhao Xinya, Li Shuangde, Huang Lili, Zhao Xin, Ren Quanming, Zhang Mingyuan, Peng Ruosi, Zhang Yanan, Zhou Xiaobin, Fan Yinming, Xie Qinglin, Guo Yanbing, Ye Daiqi, Chen Yunfa

机构信息

College of Environment Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China.

Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.

出版信息

Angew Chem Int Ed Engl. 2023 Dec 11;62(50):e202313868. doi: 10.1002/anie.202313868. Epub 2023 Nov 13.

Abstract

Solar-to-chemical energy conversion under weak solar irradiation is generally difficult to meet the heat demand of CO reduction. Herein, a new concentrated solar-driven photothermal system coupling a dual-metal single-atom catalyst (DSAC) with adjacent Ni-N and Fe-N pair sites is designed for boosting gas-solid CO reduction with H O under simulated solar irradiation, even under ambient sunlight. As expected, the (Ni, Fe)-N-C DSAC exhibits a superior photothermal catalytic performance for CO reduction to CO (86.16 μmol g  h ), CH (135.35 μmol g  h ) and CH OH (59.81 μmol g  h ), which are equivalent to 1.70-fold, 1.27-fold and 1.23-fold higher than those of the Fe-N-C catalyst, respectively. Based on theoretical simulations, the Fermi level and d-band center of Fe atom is efficiently regulated in non-interacting Ni and Fe dual-atom pair sites with electronic interaction through electron orbital hybridization on (Ni, Fe)-N-C DSAC. Crucially, the distance between adjacent Ni and Fe atoms of the Ni-N-N-Fe configuration means that the additional Ni atom as a new active site contributes to the main *COOH and *HCO dissociation to optimize the corresponding energy barriers in the reaction process, leading to specific dual reaction pathways (COOH and HCO pathways) for solar-driven photothermal CO reduction to initial CO production.

摘要

在弱太阳辐射下将太阳能转化为化学能通常难以满足一氧化碳还原所需的热量。在此,设计了一种新型的聚光太阳能驱动光热系统,该系统将具有相邻镍 - 氮和铁 - 氮对位点的双金属单原子催化剂(DSAC)耦合在一起,用于在模拟太阳辐射下,甚至在环境阳光条件下促进气 - 固一氧化碳与水的还原反应。正如预期的那样,(镍,铁)- 氮 - 碳DSAC在将一氧化碳还原为一氧化碳(86.16微摩尔·克⁻¹·小时⁻¹)、甲烷(135.35微摩尔·克⁻¹·小时⁻¹)和甲醇(59.81微摩尔·克⁻¹·小时⁻¹)方面表现出卓越的光热催化性能,分别比铁 - 氮 - 碳催化剂高出1.70倍、1.27倍和1.23倍。基于理论模拟,通过(镍,铁)- 氮 - 碳DSAC上的电子轨道杂化,在非相互作用的镍和铁双原子对位点中,铁原子的费米能级和d带中心通过电子相互作用得到有效调节。至关重要的是,镍 - 氮 - 氮 - 铁构型中相邻镍和铁原子之间的距离意味着额外的镍原子作为新的活性位点有助于主要的COOH和HCO解离,从而优化反应过程中的相应能垒,导致太阳能驱动光热一氧化碳还原为初始一氧化碳产物的特定双反应途径(COOH和HCO途径)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验