Suppr超能文献

可解释神经网络:原理与应用

Interpretable neural networks: principles and applications.

作者信息

Liu Zhuoyang, Xu Feng

机构信息

Key Lab of Information Science of Electromagnetic Waves, Fudan University, Shanghai, China.

Faculty of Math and Computer Science, Weizmann Institute of Science, Rehovot, Israel.

出版信息

Front Artif Intell. 2023 Oct 13;6:974295. doi: 10.3389/frai.2023.974295. eCollection 2023.

Abstract

In recent years, with the rapid development of deep learning technology, great progress has been made in computer vision, image recognition, pattern recognition, and speech signal processing. However, due to the black-box nature of deep neural networks (DNNs), one cannot explain the parameters in the deep network and why it can perfectly perform the assigned tasks. The interpretability of neural networks has now become a research hotspot in the field of deep learning. It covers a wide range of topics in speech and text signal processing, image processing, differential equation solving, and other fields. There are subtle differences in the definition of interpretability in different fields. This paper divides interpretable neural network (INN) methods into the following two directions: model decomposition neural networks, and semantic INNs. The former mainly constructs an INN by converting the analytical model of a conventional method into different layers of neural networks and combining the interpretability of the conventional model-based method with the powerful learning capability of the neural network. This type of INNs is further classified into different subtypes depending on which type of models they are derived from, i.e., mathematical models, physical models, and other models. The second type is the interpretable network with visual semantic information for user understanding. Its basic idea is to use the visualization of the whole or partial network structure to assign semantic information to the network structure, which further includes convolutional layer output visualization, decision tree extraction, semantic graph, etc. This type of method mainly uses human visual logic to explain the structure of a black-box neural network. So it is a post-network-design method that tries to assign interpretability to a black-box network structure afterward, as opposed to the pre-network-design method of model-based INNs, which designs interpretable network structure beforehand. This paper reviews recent progress in these areas as well as various application scenarios of INNs and discusses existing problems and future development directions.

摘要

近年来,随着深度学习技术的飞速发展,计算机视觉、图像识别、模式识别和语音信号处理等领域取得了巨大进展。然而,由于深度神经网络(DNN)的黑箱性质,人们无法解释深度网络中的参数以及它为何能完美执行指定任务。神经网络的可解释性现已成为深度学习领域的一个研究热点。它涵盖了语音和文本信号处理、图像处理、微分方程求解等领域的广泛主题。不同领域中可解释性的定义存在细微差异。本文将可解释神经网络(INN)方法分为以下两个方向:模型分解神经网络和语义INN。前者主要通过将传统方法的解析模型转换为神经网络的不同层,并将基于传统模型的方法的可解释性与神经网络强大的学习能力相结合来构建INN。这类INN根据其衍生的模型类型进一步分为不同的子类型,即数学模型、物理模型和其他模型。第二类是具有视觉语义信息以供用户理解的可解释网络。其基本思想是利用整个或部分网络结构的可视化来为网络结构赋予语义信息,这进一步包括卷积层输出可视化、决策树提取、语义图等。这类方法主要利用人类视觉逻辑来解释黑箱神经网络的结构。所以它是一种在网络设计后试图为黑箱网络结构赋予可解释性的方法,这与基于模型的INN的网络设计前方法相反,后者事先设计可解释的网络结构。本文回顾了这些领域的最新进展以及INN的各种应用场景,并讨论了存在的问题和未来的发展方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f459/10606258/78859b49193e/frai-06-974295-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验