Zhu Enbo, Li Yan-Ruide, Margolis Samuel, Wang Jing, Wang Kaidong, Zhang Yaran, Wang Shaolei, Park Jongchan, Zheng Charlie, Yang Lili, Chu Alison, Zhang Yuhua, Gao Liang, Hsiai Tzung K
Department of Bioengineering, UCLA, California, 90095, USA.
Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, California, 90095, USA.
View (Beijing). 2024 Oct;5(5). doi: 10.1002/VIW.20230087. Epub 2024 Sep 3.
Light-sheet fluorescence microscopy (LSFM) introduces fast scanning of biological phenomena with deep photon penetration and minimal phototoxicity. This advancement represents a significant shift in 3-D imaging of large-scale biological tissues and 4-D (space + time) imaging of small live animals. The large data associated with LSFM requires efficient imaging acquisition and analysis with the use of artificial intelligence (AI)/machine learning (ML) algorithms. To this end, AI/ML-directed LSFM is an emerging area for multi-organ imaging and tumor diagnostics. This review will present the development of LSFM and highlight various LSFM configurations and designs for multi-scale imaging. Optical clearance techniques will be compared for effective reduction in light scattering and optimal deep-tissue imaging. This review will further depict a diverse range of research and translational applications, from small live organisms to multi-organ imaging to tumor diagnosis. In addition, this review will address AI/ML-directed imaging reconstruction, including the application of convolutional neural networks (CNNs) and generative adversarial networks (GANs). In summary, the advancements of LSFM have enabled effective and efficient post-imaging reconstruction and data analyses, underscoring LSFM's contribution to advancing fundamental and translational research.
光片荧光显微镜(LSFM)实现了对生物现象的快速扫描,具有深光子穿透能力和最小的光毒性。这一进展代表了在大规模生物组织的三维成像以及小型活体动物的四维(空间 + 时间)成像方面的重大转变。与LSFM相关的大量数据需要利用人工智能(AI)/机器学习(ML)算法进行高效的成像采集和分析。为此,AI/ML导向的LSFM是多器官成像和肿瘤诊断的一个新兴领域。本综述将介绍LSFM的发展,并重点介绍用于多尺度成像的各种LSFM配置和设计。将比较光学清除技术,以有效减少光散射并实现最佳的深层组织成像。本综述还将描述从小型活体生物到多器官成像再到肿瘤诊断的各种研究和转化应用。此外,本综述将探讨AI/ML导向的成像重建,包括卷积神经网络(CNN)和生成对抗网络(GAN)的应用。总之,LSFM的进展实现了有效且高效的成像后重建和数据分析,突出了LSFM对推进基础研究和转化研究的贡献。
J Microsc. 2016-8
Nat Plants. 2018-9-5
J Vis Exp. 2016-4-10
Methods Mol Biol. 2024
Appl Spectrosc. 2018-6-21
Front Optoelectron. 2025-8-18
Bioeng Transl Med. 2025-2-3
J Nanobiotechnology. 2025-1-29
Front Artif Intell. 2023-10-13
J Funct Biomater. 2023-9-3