School of Electronic Engineering, University of Electronic Science and Technology of China, China.
School of Electronic Engineering, University of Electronic Science and Technology of China, China.
Neural Netw. 2018 Jan;97:162-172. doi: 10.1016/j.neunet.2017.09.007. Epub 2017 Oct 10.
Visualization from trained deep neural networks has drawn massive public attention in recent. One of the visualization approaches is to train images maximizing the activation of specific neurons. However, directly maximizing the activation would lead to unrecognizable images, which cannot provide any meaningful information. In this paper, we introduce a simple but effective technique to constrain the optimization route of the visualization. By adding two totally inverse transformations, image blurring and deblurring, to the optimization procedure, recognizable images can be created. Our algorithm is good at extracting the details in the images, which are usually filtered by previous methods in the visualizations. Extensive experiments on AlexNet, VGGNet and GoogLeNet illustrate that we can better understand the neural networks utilizing the knowledge obtained by the visualization.
近年来,经过训练的深度神经网络的可视化吸引了公众的大量关注。可视化方法之一是通过最大化特定神经元的激活来训练图像。然而,直接最大化激活会导致不可识别的图像,无法提供任何有意义的信息。在本文中,我们介绍了一种简单而有效的技术,可以约束可视化的优化路径。通过在优化过程中添加两个完全相反的变换,图像模糊和去模糊,可以创建可识别的图像。我们的算法善于提取图像中的细节,这些细节通常在前一种方法的可视化中被过滤掉。在 AlexNet、VGGNet 和 GoogLeNet 上的大量实验表明,我们可以更好地理解利用可视化获得的知识的神经网络。
Neural Netw. 2017-10-10
Stud Health Technol Inform. 2017
Neural Netw. 2024-11
Comput Med Imaging Graph. 2017-6-16
Comput Methods Programs Biomed. 2017-3
IEEE J Biomed Health Inform. 2017-4-6
Graefes Arch Clin Exp Ophthalmol. 2018-1
IEEE Trans Neural Netw Learn Syst. 2017-11-22
Med Image Anal. 2017-7-26
Front Artif Intell. 2023-10-13