文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过交替图像模糊和去模糊来可视化深度神经网络。

Visualizing deep neural network by alternately image blurring and deblurring.

机构信息

School of Electronic Engineering, University of Electronic Science and Technology of China, China.

School of Electronic Engineering, University of Electronic Science and Technology of China, China.

出版信息

Neural Netw. 2018 Jan;97:162-172. doi: 10.1016/j.neunet.2017.09.007. Epub 2017 Oct 10.


DOI:10.1016/j.neunet.2017.09.007
PMID:29126069
Abstract

Visualization from trained deep neural networks has drawn massive public attention in recent. One of the visualization approaches is to train images maximizing the activation of specific neurons. However, directly maximizing the activation would lead to unrecognizable images, which cannot provide any meaningful information. In this paper, we introduce a simple but effective technique to constrain the optimization route of the visualization. By adding two totally inverse transformations, image blurring and deblurring, to the optimization procedure, recognizable images can be created. Our algorithm is good at extracting the details in the images, which are usually filtered by previous methods in the visualizations. Extensive experiments on AlexNet, VGGNet and GoogLeNet illustrate that we can better understand the neural networks utilizing the knowledge obtained by the visualization.

摘要

近年来,经过训练的深度神经网络的可视化吸引了公众的大量关注。可视化方法之一是通过最大化特定神经元的激活来训练图像。然而,直接最大化激活会导致不可识别的图像,无法提供任何有意义的信息。在本文中,我们介绍了一种简单而有效的技术,可以约束可视化的优化路径。通过在优化过程中添加两个完全相反的变换,图像模糊和去模糊,可以创建可识别的图像。我们的算法善于提取图像中的细节,这些细节通常在前一种方法的可视化中被过滤掉。在 AlexNet、VGGNet 和 GoogLeNet 上的大量实验表明,我们可以更好地理解利用可视化获得的知识的神经网络。

相似文献

[1]
Visualizing deep neural network by alternately image blurring and deblurring.

Neural Netw. 2017-10-10

[2]
Automatic Identification of Glaucoma Using Deep Learning Methods.

Stud Health Technol Inform. 2017

[3]
Deep self-supervised spatial-variant image deblurring.

Neural Netw. 2024-11

[4]
Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology.

Comput Med Imaging Graph. 2017-6-16

[5]
A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.

Comput Methods Programs Biomed. 2017-3

[6]
Epithelium-Stroma Classification via Convolutional Neural Networks and Unsupervised Domain Adaptation in Histopathological Images.

IEEE J Biomed Health Inform. 2017-4-6

[7]
OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications.

Graefes Arch Clin Exp Ophthalmol. 2018-1

[8]
Deep Learning in Microscopy Image Analysis: A Survey.

IEEE Trans Neural Netw Learn Syst. 2017-11-22

[9]
Image Deblurring Using Multi-Stream Bottom-Top-Bottom Attention Network and Global Information-Based Fusion and Reconstruction Network.

Sensors (Basel). 2020-7-3

[10]
A survey on deep learning in medical image analysis.

Med Image Anal. 2017-7-26

引用本文的文献

[1]
Interpretable neural networks: principles and applications.

Front Artif Intell. 2023-10-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索