Suppr超能文献

集成学习模型在油田产量预测中的应用研究

Research on the Application of Integrated Learning Models in Oilfield Production Forecasting.

作者信息

Ni MingCheng, Xin XianKang, Yu GaoMing, Liu Yu, Gong YuGang

机构信息

School of Petroleum Engineering, Yangtze University, Wuhan, Hubei 430100, China.

Hubei Provincial Key Laboratory of Oil and Gas Drilling and Production Engineering (Yangtze University), Wuhan, Hubei 430100, China.

出版信息

ACS Omega. 2023 Oct 10;8(42):39583-39595. doi: 10.1021/acsomega.3c05422. eCollection 2023 Oct 24.

Abstract

Forecasting oil production is crucially important in oilfield management. Currently, multifeature-based modeling methods are widely used, but such modeling methods are not universally applicable due to the different actual conditions of oilfields in different places. In this paper, a time series forecasting method based on an integrated learning model is proposed, which combines the advantages of linearity and nonlinearity and is only concerned with the internal characteristics of the production curve itself, without considering other factors. The method includes processing the production history data using singular spectrum analysis, training the autoregressive integrated moving average model and Prophet, training the wavelet neural network, and forecasting oil production. The method is validated using historical production data from the J oilfield in China from 2011 to 2021, and compared with single models, Arps model, and mainstream time series forecasting models. The results show that in the early prediction, the difference in prediction error between the integrated learning model and other models is not obvious, but in the late prediction, the integrated model still predicts stably and the other models compared with it will show more obvious fluctuations. Therefore, the model in this article can make stable and accurate predictions.

摘要

预测石油产量在油田管理中至关重要。目前,基于多特征的建模方法被广泛使用,但由于不同地区油田的实际情况不同,此类建模方法并非普遍适用。本文提出了一种基于集成学习模型的时间序列预测方法,该方法结合了线性和非线性的优点,只关注产量曲线本身的内在特征,而不考虑其他因素。该方法包括使用奇异谱分析处理生产历史数据、训练自回归积分滑动平均模型和Prophet、训练小波神经网络以及预测石油产量。利用中国J油田2011年至2021年的历史生产数据对该方法进行了验证,并与单一模型、Arps模型和主流时间序列预测模型进行了比较。结果表明,在早期预测中,集成学习模型与其他模型的预测误差差异不明显,但在后期预测中,集成模型仍能稳定预测,与之相比其他模型会出现更明显的波动。因此,本文中的模型能够进行稳定且准确的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7701/10601073/d4034bc7de7b/ao3c05422_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验