Suppr超能文献

人工智能辅助评估复杂血管腔内主动脉修复术中的瘤颈直径

Artificial Intelligence-Assisted Sac Diameter Assessment for Complex Endovascular Aortic Repair.

作者信息

Wegner Moritz, Fontaine Vincent, Nana Petroula, Dieffenbach Bryan V, Fabre Dominique, Haulon Stéphan

机构信息

Department of Vascular and Endovascular Surgery, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany.

Aortic Center, Marie Lannelongue Hospital, Groupe Hospitalier Paris Saint Joseph, Paris-Saclay University, Le Plessis-Robinson, France.

出版信息

J Endovasc Ther. 2023 Oct 30:15266028231208159. doi: 10.1177/15266028231208159.

Abstract

PURPOSE

Artificial intelligence (AI) using an automated, deep learning-based method, Augmented Radiology for Vascular Aneurysm (ARVA), has been verified as a viable aide in aneurysm morphology assessment. The aim of this study was to evaluate the accuracy of ARVA when analyzing preoperative and postoperative computed tomography angiography (CTA) in patients managed with fenestrated endovascular repair (FEVAR) for complex aortic aneurysms (cAAs).

MATERIALS AND METHODS

Preoperative and postoperative CTAs from 50 patients (n=100 CTAs) who underwent FEVAR for cAAs were extracted from the picture archiving and communication system (PACS) of a single aortic center equipped with ARVA. All studies underwent automated AI aneurysm morphology assessment by ARVA. Appropriate identification of the outer wall of the aorta was verified by manual review of the AI-generated overlays for each patient. Maximum outer-wall aortic diameters were measured by 2 clinicians using multiplanar reconstruction (MPR) and curved planar reformatting (CPR), and among studies where the aortic wall was appropriately identified by ARVA, they were compared with ARVA automated measurements.

RESULTS

Identification of the outer wall of the aorta was accurate in 89% of CTA studies. Among these, diameter measurements by ARVA were comparable to clinician measurements by MPR or CPR, with a median absolute difference of 2.4 mm on the preoperative CTAs and 1.6 mm on the postoperative CTAs. Of note, no significant difference was detected between clinician measurements using MPR or CPR on preoperative and postoperative scans (range 0.5-0.9 mm).

CONCLUSION

For patients with cAAs managed with FEVAR, ARVA provides accurate preoperative and postoperative assessment of aortic diameter in 89% of studies. This technology may provide an opportunity to automate cAA morphology assessment in most cases where time-intensive, manual clinician measurements are currently required.

CLINICAL IMPACT

In this retrospective analysis of preoperative and postoperative imaging from 50 patients managed with FEVAR, AI provided accurate aortic diameter measurements in 89% of the CTAs reviewed, despite the complexity of the aortic anatomies, and in post-operative CTAs despite metal artifact from stent grafts, markers and embolization materials. Outliers with imprecise automated aortic overlays were easily identified by scrolling through the axial AI-generated segmentation MPR cuts of the entire aorta.This study supports the notion that such emerging AI technologies can improve efficiency of routine clinician workflows while maintaining excellent measurement accuracy when analyzing complex aortic anatomies by CTA.

摘要

目的

使用基于深度学习的自动化方法——血管动脉瘤增强放射学(ARVA)的人工智能,已被证实是动脉瘤形态评估中一种可行的辅助手段。本研究的目的是评估ARVA在分析接受开窗血管内修复术(FEVAR)治疗复杂主动脉瘤(cAA)患者的术前和术后计算机断层扫描血管造影(CTA)时的准确性。

材料与方法

从配备ARVA的单一主动脉中心的图像存档与通信系统(PACS)中提取50例接受cAA的FEVAR治疗患者的术前和术后CTA(n = 100次CTA)。所有研究均由ARVA进行自动化人工智能动脉瘤形态评估。通过人工检查每位患者人工智能生成的叠加图来验证对主动脉外壁的正确识别。2名临床医生使用多平面重建(MPR)和曲面平面重组(CPR)测量主动脉最大外壁直径,并在ARVA正确识别主动脉壁的研究中,将其与ARVA自动化测量结果进行比较。

结果

在89%的CTA研究中,主动脉外壁的识别是准确的。其中,ARVA测量的直径与临床医生使用MPR或CPR测量的结果相当,术前CTA的中位绝对差值为2.4 mm,术后CTA为1.6 mm。值得注意的是,在术前和术后扫描中,临床医生使用MPR或CPR测量的结果之间未检测到显著差异(范围为0.5 - 0.9 mm)。

结论

对于接受FEVAR治疗的cAA患者,在89%的研究中,ARVA能提供准确的术前和术后主动脉直径评估。这项技术可能为在目前需要临床医生进行耗时的手动测量的大多数情况下,实现cAA形态评估的自动化提供机会。

临床影响

在对50例接受FEVAR治疗患者的术前和术后影像学进行的这项回顾性分析中,尽管主动脉解剖结构复杂,且术后CTA存在来自支架移植物、标记物和栓塞材料的金属伪影,但人工智能在89%的复查CTA中提供了准确的主动脉直径测量结果。通过滚动浏览整个主动脉的轴向人工智能生成的分割MPR切片,可以轻松识别自动主动脉叠加图不准确的异常情况。这项研究支持了这样一种观点,即这种新兴的人工智能技术可以提高临床医生日常工作流程的效率,同时在通过CTA分析复杂主动脉解剖结构时保持出色的测量准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验