Sükei Emese, Romero-Medrano Lorena, de Leon-Martinez Santiago, Herrera López Jesús, Campaña-Montes Juan José, Olmos Pablo M, Baca-Garcia Enrique, Artés Antonio
Department of Signal Theory and Communications, Universidad Carlos III de Madrid, Leganés, Spain.
Evidence-Based Behavior S.L., Leganés, Spain.
JMIR Form Res. 2023 Oct 30;7:e47167. doi: 10.2196/47167.
Functional limitations are associated with poor clinical outcomes, higher mortality, and disability rates, especially in older adults. Continuous assessment of patients' functionality is important for clinical practice; however, traditional questionnaire-based assessment methods are very time-consuming and infrequently used. Mobile sensing offers a great range of sources that can assess function and disability daily.
This work aims to prove the feasibility of an interpretable machine learning pipeline for predicting function and disability based on the World Health Organization Disability Assessment Schedule (WHODAS) 2.0 outcomes of clinical outpatients, using passively collected digital biomarkers.
One-month-long behavioral time-series data consisting of physical and digital activity descriptor variables were summarized using statistical measures (minimum, maximum, mean, median, SD, and IQR), creating 64 features that were used for prediction. We then applied a sequential feature selection to each WHODAS 2.0 domain (cognition, mobility, self-care, getting along, life activities, and participation) in order to find the most descriptive features for each domain. Finally, we predicted the WHODAS 2.0 functional domain scores using linear regression using the best feature subsets. We reported the mean absolute errors and the mean absolute percentage errors over 4 folds as goodness-of-fit statistics to evaluate the model and allow for between-domain performance comparison.
Our machine learning-based models for predicting patients' WHODAS functionality scores per domain achieved an average (across the 6 domains) mean absolute percentage error of 19.5%, varying between 14.86% (self-care domain) and 27.21% (life activities domain). We found that 5-19 features were sufficient for each domain, and the most relevant being the distance traveled, time spent at home, time spent walking, exercise time, and vehicle time.
Our findings show the feasibility of using machine learning-based methods to assess functional health solely from passively sensed mobile data. The feature selection step provides a set of interpretable features for each domain, ensuring better explainability to the models' decisions-an important aspect in clinical practice.
功能受限与不良临床结局、更高的死亡率和残疾率相关,尤其是在老年人中。持续评估患者的功能对临床实践很重要;然而,传统的基于问卷的评估方法非常耗时且很少使用。移动传感提供了大量可以每天评估功能和残疾情况的数据源。
本研究旨在证明基于世界卫生组织残疾评定量表(WHODAS)2.0临床门诊患者结局,使用被动收集的数字生物标志物来预测功能和残疾的可解释机器学习管道的可行性。
使用统计量(最小值、最大值、均值、中位数、标准差和四分位距)对由身体和数字活动描述变量组成的长达一个月的行为时间序列数据进行汇总,创建64个用于预测的特征。然后,我们对每个WHODAS 2.0领域(认知、移动性、自我护理、相处、生活活动和参与)应用顺序特征选择,以找到每个领域最具描述性的特征。最后,我们使用最佳特征子集通过线性回归预测WHODAS 2.0功能领域得分。我们报告了4折交叉验证的平均绝对误差和平均绝对百分比误差作为拟合优度统计量,以评估模型并允许进行领域间性能比较。
我们基于机器学习的预测每个领域患者WHODAS功能得分的模型平均(在6个领域中)平均绝对百分比误差为19.5%,在14.86%(自我护理领域)和27.21%(生活活动领域)之间变化。我们发现每个领域5 - 19个特征就足够了,最相关的是行进距离、在家时间、步行时间、锻炼时间和乘车时间。
我们的研究结果表明,使用基于机器学习的方法仅从被动感知的移动数据评估功能健康是可行的。特征选择步骤为每个领域提供了一组可解释的特征,确保对模型决策有更好的可解释性——这是临床实践中的一个重要方面。