Suppr超能文献

使用认知模型和生理指标对无人车控制任务中的认知负荷进行分析。

Profiling cognitive workload in an unmanned vehicle control task with cognitive models and physiological metrics.

机构信息

Cognitive Models and Agents Branch, Air Force Research Laboratory Dayton, Ohio, USA.

Cubic Mission and Performance Solutions, San Diego, CA, USA.

出版信息

Mil Psychol. 2023 Nov-Dec;35(6):507-520. doi: 10.1080/08995605.2022.2130673. Epub 2022 Oct 21.

Abstract

In the present study, we use Cognitive Metrics Profiling (CMP) to capture variance in cognitive load within a complex unmanned vehicle control task. We aim to demonstrate convergent validity with existing workload measurement methods, and to decompose workload into constituent cognitive resources to aid in diagnosing causes of workload. A cognitive model of the task was developed and examined to determine the extent to which it could predict behavioral performance, subjective workload, and validated physiological workload metrics. We also examined model activity to draw insights regarding loaded cognitive capacities. We found that composite workload from the model predicted physiological metrics, performance, and subjective workload. Moreover, the model indicates that differences in workload were driven largely by procedural, declarative, and temporal memory demands. We have found preliminary evidence of correspondence between workload predictions of a CMP model and physiological measures of workload. This suggests our approach captures interesting aspects of workload in a complex task environment and may provide a theoretical link between behavioral, physiological, and subjective metrics. This approach may provide a means to design effective workload mitigation interventions and improve decision-making about personnel tasking and automation.

摘要

在本研究中,我们使用认知计量分析(CMP)来捕捉复杂无人机控制任务中的认知负荷变化。我们旨在与现有的工作负荷测量方法建立收敛效度,并将工作负荷分解为组成认知资源,以帮助诊断工作负荷的原因。我们开发并检验了一个任务的认知模型,以确定它在多大程度上可以预测行为表现、主观工作负荷和经过验证的生理工作负荷指标。我们还检查了模型的活动,以深入了解负载认知能力。我们发现,模型的综合工作负荷可以预测生理指标、绩效和主观工作负荷。此外,该模型表明,工作负荷的差异主要是由程序性、陈述性和时间记忆需求驱动的。我们已经初步发现,CMP 模型的工作负荷预测与生理工作负荷测量之间存在对应关系。这表明我们的方法在复杂任务环境中捕捉到了工作负荷的有趣方面,并可能在行为、生理和主观指标之间建立了理论联系。这种方法可能为设计有效的工作负荷缓解干预措施以及更好地决定人员任务和自动化提供一种手段。

相似文献

2
Cognitive demands in automation.自动化中的认知需求。
Aviat Space Environ Med. 1989 Feb;60(2):130-5.

本文引用的文献

2
Reconstructing fine-grained cognition from brain activity.从大脑活动重建精细认知。
Neuroimage. 2020 Nov 1;221:116999. doi: 10.1016/j.neuroimage.2020.116999. Epub 2020 Jun 1.
9
Multiple resources and mental workload.多种资源与心理负荷。
Hum Factors. 2008 Jun;50(3):449-55. doi: 10.1518/001872008X288394.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验