Suppr超能文献

scMultiGAN:使用多个深度生成对抗网络进行单细胞转录组的细胞特异性插补。

scMultiGAN: cell-specific imputation for single-cell transcriptomes with multiple deep generative adversarial networks.

机构信息

School of Computer Science, Northwestern Polytechnical University, 1 Dongxiang Rd., 710072 Xi'an, China.

Key Laboratory of Big Data Storage and Management, Ministry of Industry and Information Technology, Northwestern Polytechnical University, 1 Dongxiang Rd., 710072 Xi'an, China.

出版信息

Brief Bioinform. 2023 Sep 22;24(6). doi: 10.1093/bib/bbad384.

Abstract

The emergence of single-cell RNA sequencing (scRNA-seq) technology has revolutionized the identification of cell types and the study of cellular states at a single-cell level. Despite its significant potential, scRNA-seq data analysis is plagued by the issue of missing values. Many existing imputation methods rely on simplistic data distribution assumptions while ignoring the intrinsic gene expression distribution specific to cells. This work presents a novel deep-learning model, named scMultiGAN, for scRNA-seq imputation, which utilizes multiple collaborative generative adversarial networks (GAN). Unlike traditional GAN-based imputation methods that generate missing values based on random noises, scMultiGAN employs a two-stage training process and utilizes multiple GANs to achieve cell-specific imputation. Experimental results show the efficacy of scMultiGAN in imputation accuracy, cell clustering, differential gene expression analysis and trajectory analysis, significantly outperforming existing state-of-the-art techniques. Additionally, scMultiGAN is scalable to large scRNA-seq datasets and consistently performs well across sequencing platforms. The scMultiGAN code is freely available at https://github.com/Galaxy8172/scMultiGAN.

摘要

单细胞 RNA 测序 (scRNA-seq) 技术的出现彻底改变了在单细胞水平上鉴定细胞类型和研究细胞状态的方式。尽管它具有巨大的潜力,但 scRNA-seq 数据分析受到缺失值问题的困扰。许多现有的插补方法依赖于简单的数据分布假设,而忽略了细胞内在的基因表达分布特异性。本研究提出了一种名为 scMultiGAN 的新型深度学习模型,用于 scRNA-seq 插补,该模型利用多个协作生成对抗网络 (GAN)。与传统基于 GAN 的插补方法不同,后者基于随机噪声生成缺失值,scMultiGAN 采用两阶段训练过程,并利用多个 GAN 实现细胞特异性插补。实验结果表明,scMultiGAN 在插补准确性、细胞聚类、差异基因表达分析和轨迹分析方面具有显著优势,明显优于现有的最先进技术。此外,scMultiGAN 可扩展到大型 scRNA-seq 数据集,并在不同测序平台上始终表现良好。scMultiGAN 代码可在 https://github.com/Galaxy8172/scMultiGAN 上免费获取。

相似文献

2
scGGAN: single-cell RNA-seq imputation by graph-based generative adversarial network.
Brief Bioinform. 2023 Mar 19;24(2). doi: 10.1093/bib/bbad040.
4
A novel f-divergence based generative adversarial imputation method for scRNA-seq data analysis.
PLoS One. 2023 Nov 10;18(11):e0292792. doi: 10.1371/journal.pone.0292792. eCollection 2023.
5
Collaborative Structure-Preserved Missing Data Imputation for Single-Cell RNA-Seq Clustering.
IEEE/ACM Trans Comput Biol Bioinform. 2024 Sep-Oct;21(5):1480-1491. doi: 10.1109/TCBB.2024.3404013. Epub 2024 Oct 9.
7
scIGANs: single-cell RNA-seq imputation using generative adversarial networks.
Nucleic Acids Res. 2020 Sep 4;48(15):e85. doi: 10.1093/nar/gkaa506.
8
AGImpute: imputation of scRNA-seq data based on a hybrid GAN with dropouts identification.
Bioinformatics. 2024 Feb 1;40(2). doi: 10.1093/bioinformatics/btae068.
9
CL-Impute: A contrastive learning-based imputation for dropout single-cell RNA-seq data.
Comput Biol Med. 2023 Sep;164:107263. doi: 10.1016/j.compbiomed.2023.107263. Epub 2023 Jul 23.
10
scGCL: an imputation method for scRNA-seq data based on graph contrastive learning.
Bioinformatics. 2023 Mar 1;39(3). doi: 10.1093/bioinformatics/btad098.

引用本文的文献

1
DeepExDC interprets genomic compartmentalization changes in single-cell Hi-C data.
Brief Bioinform. 2025 May 1;26(3). doi: 10.1093/bib/bbaf301.
3
A cross dataset meta-model for hepatitis C detection using multi-dimensional pre-clustering.
Sci Rep. 2025 Mar 1;15(1):7278. doi: 10.1038/s41598-025-91298-0.
5
DMOIT: denoised multi-omics integration approach based on transformer multi-head self-attention mechanism.
Front Genet. 2024 Dec 10;15:1488683. doi: 10.3389/fgene.2024.1488683. eCollection 2024.
6
9

本文引用的文献

1
Unsupervised spatially embedded deep representation of spatial transcriptomics.
Genome Med. 2024 Jan 12;16(1):12. doi: 10.1186/s13073-024-01283-x.
2
High-throughput RNA isoform sequencing using programmed cDNA concatenation.
Nat Biotechnol. 2024 Apr;42(4):582-586. doi: 10.1038/s41587-023-01815-7. Epub 2023 Jun 8.
3
scDrug: From single-cell RNA-seq to drug response prediction.
Comput Struct Biotechnol J. 2022 Dec 1;21:150-157. doi: 10.1016/j.csbj.2022.11.055. eCollection 2023.
4
Single-cell RNA sequencing technologies and applications: A brief overview.
Clin Transl Med. 2022 Mar;12(3):e694. doi: 10.1002/ctm2.694.
5
A single-cell and spatially resolved atlas of human breast cancers.
Nat Genet. 2021 Sep;53(9):1334-1347. doi: 10.1038/s41588-021-00911-1. Epub 2021 Sep 6.
6
Critical downstream analysis steps for single-cell RNA sequencing data.
Brief Bioinform. 2021 Sep 2;22(5). doi: 10.1093/bib/bbab105.
7
Single-cell network biology for resolving cellular heterogeneity in human diseases.
Exp Mol Med. 2020 Nov;52(11):1798-1808. doi: 10.1038/s12276-020-00528-0. Epub 2020 Nov 26.
8
scIGANs: single-cell RNA-seq imputation using generative adversarial networks.
Nucleic Acids Res. 2020 Sep 4;48(15):e85. doi: 10.1093/nar/gkaa506.
10
Embracing the dropouts in single-cell RNA-seq analysis.
Nat Commun. 2020 Mar 3;11(1):1169. doi: 10.1038/s41467-020-14976-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验