School of Computer Science, Northwestern Polytechnical University, 1 Dongxiang Rd., 710072 Xi'an, China.
Key Laboratory of Big Data Storage and Management, Ministry of Industry and Information Technology, Northwestern Polytechnical University, 1 Dongxiang Rd., 710072 Xi'an, China.
Brief Bioinform. 2023 Sep 22;24(6). doi: 10.1093/bib/bbad384.
The emergence of single-cell RNA sequencing (scRNA-seq) technology has revolutionized the identification of cell types and the study of cellular states at a single-cell level. Despite its significant potential, scRNA-seq data analysis is plagued by the issue of missing values. Many existing imputation methods rely on simplistic data distribution assumptions while ignoring the intrinsic gene expression distribution specific to cells. This work presents a novel deep-learning model, named scMultiGAN, for scRNA-seq imputation, which utilizes multiple collaborative generative adversarial networks (GAN). Unlike traditional GAN-based imputation methods that generate missing values based on random noises, scMultiGAN employs a two-stage training process and utilizes multiple GANs to achieve cell-specific imputation. Experimental results show the efficacy of scMultiGAN in imputation accuracy, cell clustering, differential gene expression analysis and trajectory analysis, significantly outperforming existing state-of-the-art techniques. Additionally, scMultiGAN is scalable to large scRNA-seq datasets and consistently performs well across sequencing platforms. The scMultiGAN code is freely available at https://github.com/Galaxy8172/scMultiGAN.
单细胞 RNA 测序 (scRNA-seq) 技术的出现彻底改变了在单细胞水平上鉴定细胞类型和研究细胞状态的方式。尽管它具有巨大的潜力,但 scRNA-seq 数据分析受到缺失值问题的困扰。许多现有的插补方法依赖于简单的数据分布假设,而忽略了细胞内在的基因表达分布特异性。本研究提出了一种名为 scMultiGAN 的新型深度学习模型,用于 scRNA-seq 插补,该模型利用多个协作生成对抗网络 (GAN)。与传统基于 GAN 的插补方法不同,后者基于随机噪声生成缺失值,scMultiGAN 采用两阶段训练过程,并利用多个 GAN 实现细胞特异性插补。实验结果表明,scMultiGAN 在插补准确性、细胞聚类、差异基因表达分析和轨迹分析方面具有显著优势,明显优于现有的最先进技术。此外,scMultiGAN 可扩展到大型 scRNA-seq 数据集,并在不同测序平台上始终表现良好。scMultiGAN 代码可在 https://github.com/Galaxy8172/scMultiGAN 上免费获取。