Suppr超能文献

一种用于结直肠癌对放化疗反应的高效基于人工智能的分类方法的开发:深度学习与机器学习

The development of an efficient artificial intelligence-based classification approach for colorectal cancer response to radiochemotherapy: deep learning vs. machine learning.

作者信息

Bahrambanan Fatemeh, Alizamir Meysam, Moradveisi Kayhan, Heddam Salim, Kim Sungwon, Kim Seunghyun, Soleimani Meysam, Afshar Saeid, Taherkhani Amir

机构信息

Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.

Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.

出版信息

Sci Rep. 2025 Jan 2;15(1):62. doi: 10.1038/s41598-024-84023-w.

Abstract

Colorectal cancer (CRC) is a form of cancer that impacts both the rectum and colon. Typically, it begins with a small abnormal growth known as a polyp, which can either be non-cancerous or cancerous. Therefore, early detection of colorectal cancer as the second deadliest cancer after lung cancer, can be highly beneficial. Moreover, the standard treatment for locally advanced colorectal cancer, which is widely accepted around the world, is chemoradiotherapy. Then, in this study, seven artificial intelligence models including decision tree, K-nearest neighbors, Adaboost, random forest, Gradient Boosting, multi-layer perceptron, and convolutional neural network were implemented to detect patients responder and non-responder to radiochemotherapy. For finding the potential predictors (genes), three feature selection strategies were employed including mutual information, F-classif, and Chi-Square. Based on feature selection models, four different scenarios were developed and five, ten, twenty and thirty features selected for designing a more accurate classification paradigm. The results of this study confirm that random forest, Gradient Boosting, decision tree, and K-nearest neighbors provided more accurate results in terms of accuracy, by 93.8%. Moreover, Among the feature selection methods, mutual information and F-classif showed the best results, while Chi-Square produced the worst results. Therefore, the suggested artificial intelligence models can be successfully applied as a robust approach for classification of colorectal cancer response to radiochemotherapy for medical studies.

摘要

结直肠癌(CRC)是一种影响直肠和结肠的癌症形式。通常,它始于一种称为息肉的小异常生长,息肉可以是良性的也可以是恶性的。因此,作为仅次于肺癌的第二大致命癌症,早期检测结直肠癌可能非常有益。此外,局部晚期结直肠癌的标准治疗方法是放化疗,这在全世界都被广泛接受。然后,在本研究中,实施了包括决策树、K近邻、Adaboost、随机森林、梯度提升、多层感知器和卷积神经网络在内的七种人工智能模型,以检测对放化疗有反应和无反应的患者。为了找到潜在的预测因子(基因),采用了三种特征选择策略,包括互信息、F分类和卡方检验。基于特征选择模型,开发了四种不同的方案,并分别选择了五个、十个、二十个和三十个特征来设计更准确的分类范式。本研究结果证实,随机森林、梯度提升、决策树和K近邻在准确率方面提供了更准确的结果,达到了93.8%。此外,在特征选择方法中,互信息和F分类显示出最佳结果,而卡方检验产生的结果最差。因此,所建议的人工智能模型可以成功地作为一种强大的方法应用于医学研究中结直肠癌对放化疗反应的分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f084/11696929/f5d14b896086/41598_2024_84023_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验