Suppr超能文献

SARS-CoV-2 进化中的基序。

Motifs in SARS-CoV-2 evolution.

机构信息

Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, Virginia 22904, USA.

Department of Computer Science, University of Virginia, Charlottesville, Virginia 22904, USA.

出版信息

RNA. 2023 Dec 18;30(1):1-15. doi: 10.1261/rna.079557.122.

Abstract

We present a novel framework enhancing the prediction of whether novel lineage poses the threat of eventually dominating the viral population. The framework is based purely on genomic sequence data, without requiring prior established biological analysis. Its building blocks are sets of coevolving sites in the alignment (motifs), identified via coevolutionary signals. The collection of such motifs forms a relational structure over the polymorphic sites. Motifs are constructed using distances quantifying the coevolutionary coupling of pairs and manifest as coevolving clusters of sites. We present an approach to genomic surveillance based on this notion of relational structure. Our system will issue an alert regarding a lineage, based on its contribution to drastic changes in the relational structure. We then conduct a comprehensive retrospective analysis of the COVID-19 pandemic based on SARS-CoV-2 genomic sequence data in GISAID from October 2020 to September 2022, across 21 lineages and 27 countries with weekly resolution. We investigate the performance of this surveillance system in terms of its accuracy, timeliness, and robustness. Lastly, we study how well each lineage is classified by such a system.

摘要

我们提出了一个新颖的框架,用于增强对新型谱系是否最终有可能主导病毒种群的威胁的预测。该框架完全基于基因组序列数据,无需事先进行既定的生物学分析。其构建块是对齐中的共进化位点集(模体),通过共进化信号识别。这些模体的集合在多态性位点上形成了一个关系结构。模体是使用量化对的共进化耦合的距离构建的,表现为共进化的位点簇。我们提出了一种基于这种关系结构概念的基因组监测方法。我们的系统将根据谱系对关系结构的剧烈变化的贡献发出警报。然后,我们根据 GISAID 中 2020 年 10 月至 2022 年 9 月 27 个国家的 21 个谱系的 SARS-CoV-2 基因组序列数据,进行了一项全面的回顾性分析,每周进行一次分析。我们研究了该监测系统在准确性、及时性和稳健性方面的性能。最后,我们研究了这种系统对每个谱系的分类效果如何。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd1f/10726165/c7133b9b4ad5/1f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验