Life Science, Barcelona Supercomputing Center (BSC), 1-3 Plaça Eusebi Güell, 08034, Barcelona, Spain.
Institut Curie, Université PSL, 26 rue d'Ulm, 75248, Paris, France.
NPJ Syst Biol Appl. 2023 Oct 30;9(1):54. doi: 10.1038/s41540-023-00314-4.
In systems biology, mathematical models and simulations play a crucial role in understanding complex biological systems. Different modelling frameworks are employed depending on the nature and scales of the system under study. For instance, signalling and regulatory networks can be simulated using Boolean modelling, whereas multicellular systems can be studied using agent-based modelling. Herein, we present PhysiBoSS 2.0, a hybrid agent-based modelling framework that allows simulating signalling and regulatory networks within individual cell agents. PhysiBoSS 2.0 is a redesign and reimplementation of PhysiBoSS 1.0 and was conceived as an add-on that expands the PhysiCell functionalities by enabling the simulation of intracellular cell signalling using MaBoSS while keeping a decoupled, maintainable and model-agnostic design. PhysiBoSS 2.0 also expands the set of functionalities offered to the users, including custom models and cell specifications, mechanistic submodels of substrate internalisation and detailed control over simulation parameters. Together with PhysiBoSS 2.0, we introduce PCTK, a Python package developed for handling and processing simulation outputs, and generating summary plots and 3D renders. PhysiBoSS 2.0 allows studying the interplay between the microenvironment, the signalling pathways that control cellular processes and population dynamics, suitable for modelling cancer. We show different approaches for integrating Boolean networks into multi-scale simulations using strategies to study the drug effects and synergies in models of cancer cell lines and validate them using experimental data. PhysiBoSS 2.0 is open-source and publicly available on GitHub with several repositories of accompanying interoperable tools.
在系统生物学中,数学模型和模拟在理解复杂生物系统方面起着至关重要的作用。根据所研究系统的性质和规模,采用不同的建模框架。例如,可以使用布尔建模来模拟信号和调节网络,而可以使用基于代理的建模来研究多细胞系统。在这里,我们介绍了 PhysiBoSS 2.0,这是一个混合的基于代理的建模框架,允许在单个细胞代理中模拟信号和调节网络。PhysiBoSS 2.0 是 PhysiBoSS 1.0 的重新设计和重新实现,被构想为一个附加组件,通过使用 MaBoSS 模拟细胞内信号转导来扩展 PhysiCell 的功能,同时保持解耦、可维护和与模型无关的设计。PhysiBoSS 2.0 还扩展了为用户提供的功能集,包括自定义模型和细胞规格、底物内化的机制子模型以及对模拟参数的详细控制。我们还介绍了 PCTK,这是一个用于处理和处理模拟输出、生成摘要图和 3D 渲染的 Python 包,它是与 PhysiBoSS 2.0 一起开发的。PhysiBoSS 2.0 允许研究微环境、控制细胞过程和群体动态的信号通路之间的相互作用,非常适合建模癌症。我们展示了使用不同的方法将布尔网络集成到多尺度模拟中,以研究癌症细胞系模型中的药物效应和协同作用,并使用实验数据对其进行验证。PhysiBoSS 2.0 是开源的,并在 GitHub 上公开提供,带有几个伴随的可互操作工具的存储库。