Institut Curie, PSL Research University, Paris, France.
INSERM, U900, Paris, France.
Elife. 2022 Feb 15;11:e72626. doi: 10.7554/eLife.72626.
Prostate cancer is the second most occurring cancer in men worldwide. To better understand the mechanisms of tumorigenesis and possible treatment responses, we developed a mathematical model of prostate cancer which considers the major signalling pathways known to be deregulated. We personalised this Boolean model to molecular data to reflect the heterogeneity and specific response to perturbations of cancer patients. A total of 488 prostate samples were used to build patient-specific models and compared to available clinical data. Additionally, eight prostate cell line-specific models were built to validate our approach with dose-response data of several drugs. The effects of single and combined drugs were tested in these models under different growth conditions. We identified 15 actionable points of interventions in one cell line-specific model whose inactivation hinders tumorigenesis. To validate these results, we tested nine small molecule inhibitors of five of those putative targets and found a dose-dependent effect on four of them, notably those targeting HSP90 and PI3K. These results highlight the predictive power of our personalised Boolean models and illustrate how they can be used for precision oncology.
前列腺癌是全球男性第二大常见癌症。为了更好地理解肿瘤发生的机制和可能的治疗反应,我们开发了一种考虑到已知失调的主要信号通路的前列腺癌数学模型。我们将这个布尔模型个性化,以反映癌症患者的异质性和对扰动的特定反应的分子数据。总共使用了 488 个前列腺样本来构建患者特异性模型,并与可用的临床数据进行比较。此外,还构建了 8 种前列腺细胞系特异性模型,以通过几种药物的剂量反应数据验证我们的方法。在不同的生长条件下,在这些模型中测试了单药和联合用药的效果。我们在一个细胞系特异性模型中确定了 15 个可干预的作用点,其失活会阻碍肿瘤发生。为了验证这些结果,我们测试了针对其中 5 个假定靶点的 9 种小分子抑制剂,发现其中 4 种(特别是针对 HSP90 和 PI3K 的抑制剂)具有剂量依赖性效应。这些结果突出了我们个性化布尔模型的预测能力,并说明了如何将其用于精准肿瘤学。