Suppr超能文献

将基于机制的T细胞表型整合到肿瘤-免疫细胞相互作用模型中。

Integrating mechanism-based T cell phenotypes into a model of tumor-immune cell interactions.

作者信息

Tangella Neel, Cess Colin G, Ildefonso Geena V, Finley Stacey D

机构信息

Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA.

Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.

出版信息

APL Bioeng. 2024 Aug 20;8(3):036111. doi: 10.1063/5.0205996. eCollection 2024 Sep.

Abstract

Interactions between cancer cells and immune cells in the tumor microenvironment influence tumor growth and can contribute to the response to cancer immunotherapies. It is difficult to gain mechanistic insights into the effects of cell-cell interactions in tumors using a purely experimental approach. However, computational modeling enables quantitative investigation of the tumor microenvironment, and agent-based modeling, in particular, provides relevant biological insights into the spatial and temporal evolution of tumors. Here, we develop a novel agent-based model (ABM) to predict the consequences of intercellular interactions. Furthermore, we leverage our prior work that predicts the transitions of CD8 T cells from a naïve state to a terminally differentiated state using Boolean modeling. Given the details incorporated to predict T cell state, we apply the integrated Boolean-ABM framework to study how the properties of CD8 T cells influence the composition and spatial organization of tumors and the efficacy of an immune checkpoint blockade. Overall, we present a mechanistic understanding of tumor evolution that can be leveraged to study targeted immunotherapeutic strategies.

摘要

肿瘤微环境中癌细胞与免疫细胞之间的相互作用会影响肿瘤生长,并可能有助于癌症免疫治疗的反应。使用纯实验方法很难深入了解肿瘤中细胞间相互作用的机制。然而,计算建模能够对肿瘤微环境进行定量研究,特别是基于主体的建模,为肿瘤的时空演变提供了相关的生物学见解。在这里,我们开发了一种新颖的基于主体的模型(ABM)来预测细胞间相互作用的后果。此外,我们利用之前的工作,即使用布尔建模预测CD8 T细胞从初始状态到终末分化状态的转变。鉴于预测T细胞状态时纳入的细节,我们应用集成的布尔-ABM框架来研究CD8 T细胞的特性如何影响肿瘤的组成和空间组织以及免疫检查点阻断的疗效。总体而言,我们提出了一种对肿瘤演变的机制性理解,可用于研究靶向免疫治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f15f/11341129/d73602d6233b/ABPID9-000008-036111_1-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验